CHARACTERIZATION OF ENVIRONMENTAL AND INPUT BEAM NOISE INPUTS

Director's Review, May 1, 2000 Daniel Sigg

Seismic Displacement Noise

Fred R., Eric M., Robert S., control room staff

Frequency Noise of Light after Mode Cleaner

Nergis M., Peter F., Haisheng R., Dale O., Dick G.

Angular Fluctuations of Optics Rolf B., Bill K., Luca M., Rana A., David S., Rai W., Tom N.,...

SEISMIC DISPLACEMENT NOISE

- □ Micro seismic
- □ Tidal forces
- Dynamic range of suspension controller
- Average velocities for "locking"
- □ Thermal actuator (reference cavity)
- □ Fine actuator
- Dial-in/feed-forward?
- Seismometer/Tiltmeter?

FREQUENCY NOISE

□ After Mode cleaner:

Measured with arm cavity control signals

- **O ITMX path**
- O MCL path
- O AO path
- Remaining frequency suppression at RM Measured with arm cavity error signal

ANGULAR FLUCTUATIONS

□ ASC alignment system:

- O Wavefront sensors in reflection
- O Quadrant position sensor in transmission
- O Feedback to beamsplitter, ITMX and ETMX orientations
- Look at error signal with ASC on/off
- Look at control signals when ASC is engaged
- □ Calibrate with optical levers
- DC readout
- □ Near/far field differences
- □ Mode cleaner locking & orientation

ITMX Yaw

ETMX Yaw

CONCLUSIONS

Did we learn anything about the environment which would significantly impact the current design?

- O Tidal: as expected
- O Micro seismic: better than expected (at least at LHO)
- Angular fluctuations: larger than expected but unclear how much is self-inflicted

