LIGO II Photodetectors and Adaptive Thermal Lensing Compensation for Core Optics

> LIGO PAC Meeting 1 May, 2000

> > M. E. Zucker

Photodetector optical & thermal requirements

• CW power handling

- "Dark" port with/without active thermal compensation: 1W? 10W?
- Transient power handling
 - reflection from PRC, MC ; full incident power, spike to 4x incident on unlock
- quantum efficiency
 - shoot for 90% (trades w/laser power, but poorly)
- backscatter

need 10-100 X improvement over LIGO I diodes (assuming Faraday isolator)

PD power transients (conceptual)

Electrical & signal requirements

• RF frequency

- To provide flexibility for LIGO II modulation schemes => $f_{RF} \approx 100 \text{ MHz}$
- SNR (i.e., 'shot:electronic noise ratio')

$$\frac{e_{elec}^{2}}{e_{shot}^{2}} = \frac{1}{2eI_{DC}K_{mod}} \left(\frac{4k_{B}T}{Z_{D}} + \frac{e_{n}^{2}}{Z_{D}^{2}} + i_{n}^{2} \right)$$
$$Z_{D}(\omega_{0}) = \frac{1}{R_{D}\omega_{0}^{2}C_{D}^{2}}$$

- damage -> lower I_{DC}
- SNR -> raise I_{DC}
- e.g., 1.2 W, 1 nV/ \sqrt{Hz} , N=10 diodes => $|Z_D(\omega_0)| > 150\Omega$

■ EGG G30642G, 100 MHz: $|Z_D(100 \text{ MHz})| \approx 54 \Omega$ (OK @29 MHZ)

LIGO II Photodetectors: Status & Plan

• Requirements definition & simulation

- First-cut Requirements draft circulated for discussion at LSC 3/00
- additional Melody & FFT simulations required to bound steady-state power
- additional E2E simulations required to bound transient power
- selection of modulation/readout configuration will determine frequencies
- Device fabrication
 - High power custom devices now being fabricated by D. Jackrel at Stanford
- Testing
 - MIT PD test rigs upgraded to f > 125 MHz, P > 0.5 W /diode, B < 10^{-6} sr⁻

Current Best Guess: PD Specs for LIGO II Power and Sensitivity

Parameter	LIGO I	LIGO II guess
Steady-state power	0.6 W	3 W ^a ?
Transient damage	3 J / 10 ms	100 J / 10 ms ?
Signal/Noise	1.4 x 10 ¹⁰ Hz ^{1/2}	3.1 x 10 ¹⁰ Hz ^{1/2}
Quantum efficiency	80%	90%
Spatial uniformity	1% RMS	0.1% RMS ?
Surface backscatter	10 ⁻⁴ /sr	10 ⁻⁶ /sr ^b

a. Assumes significant improvement in contrast defect & cancellation of thermal lensing

b. Assumes Faraday isolator and seismic isolation of detector

Adaptive Compensation of Thermal Lensing in LIGO II Core Optics

- In LIGO I, thermal lensing requires polishing curvature bias into core optics to achieve adequate performance at operating temperature
- LIGO II will have 30X greater laser power
 - lensing more severe
 - net figure requirements tighter (e.g., to reduce dark port power)
 - higher order (nonspherical) distortions significant; prepolished bias, refocusing not adequate to recover performance
 - possible bootstrap problem on cold start
- Test mass material change not adequate
 - SiO₂ has low k_{th}, but low bulk absorption
 - Al₂O₃ has higher k_{th}, but higher bulk absorption compensates (so far)

FEA model: uncorrected SiO₂ ITM

Sensing & Actuation

- Extension of LIGO I "Wavefront Sensing" technology to spatially decompose interferometric phase errors
 - scanning "Phase Camera" (Adhikari, MIT)
 - staring "Bullseye WFS" (Mueller, UF)
- Numerical inversion of errors into actuation basis
- Thermal actuation on core optics
 - Noncontact actuator with minimal spurious phase noise
 - Time constants matched to disturbance timescales
- Two actuators considered (possibly in combination)
 - Passive radiative ring heater
 - Scanned directed beam

Thermal Actuation Methods

Possible implementation

FEA model w/correction: ring heater + cylindrical radiation shield

LIGO-G000116-00-R

Test Experiment at MIT

Measured OPD vs. time, ring heater w/SiO₂ test optic

Thermal Compensation: Status & Plans

- Bullseye PD and scanning phase camera under test at UF, MIT and LHO (G. Muller, R. Adhikari)
- Experiment phase I complete, phase II underway (R. Lawrence):
 - Generate static Gaussian lens w/ CO₂ beam & correct with radiative ring
- Experiment phase III to begin by summer
 - "actuation basis" kernel for scanned beam under development (R. Bennett)
 - scanners, galvos & laser already installed & operational (R. Lawrence)
- New initiative for 3-d + t finite element model to treat noise/ thermal expansion interactions (R. Lawrence, R. Beausoleil)

