

The LIGO Interferometer Sensing and Controls System

M. Zucker

LIGO Project, MIT Center for Space Research

Marcel Grossmann IX Meeting

Rome, 3 July 2000

LIGO-G000155-00-D

ISC overview

• What is ISC?

- ♦ Initialize alignment to attain interference in coupled LIGO cavities
- Sense optical phase to derive interferometer lengths and laser wavelength
- Sense spatial phase gradients to determine mirror alignment errors
- Apply feedback controls to maintain and optimize optical resonance
- ♦ Provide calibrated readout of gravitational wave strain

• Who's responsible?

D. Barker, R. Bork, E. Daw, M. Evans, P. Fritschel, G. Gonzalez, J. Heefner,
A. Marin, N. Mavalvala, D. Ouimette, L. Sievers, D. Sigg, B. Ware, M. Zucker

Core Optics Initial Alignment & Positioning

Reference vectors from GPS-based construction survey monuments are transferred to suspended optic normals with autocollimator-equipped theodolite

Lock the laser, open the beamtube gate valves and...

LIGO-G000155-00-D

The LIGO I Interferometer

Modulation & Readout

- Frontal "Schnupp" modulation scheme
 - \Diamond Front (recycling) cavity mean length l_+ chosen to resonate with common phase-modulation sidebands; arm cavities only resonant with carrier
 - \Diamond Macroscopic asymmetry Δl_{\perp} (fraction of RF wavelength) couples sidebands out dark port, where they beat with residual carrier returning from arms
 - \Diamond Detected/demodulated beat note reveals phase difference between arms (*L*)
 - \diamond Auxiliary degrees of freedom (l_+ , l_- , L_+ / v_l) are similarly sensed by sampling reflected and circulating fields & demodulating with appropriate reference phases

Length Sensing Matrix Elements & Chosen Control Signals

Sion al mont	A	Sound at	Degree of Freedom			
Signai pori	ΨRF	Symbol	L_+	l_+	<i>L_</i>	<i>l_</i>
Reflection	Ι	S _{RI}	-62000	-560	0	0
Rec. cav. PO	Ι	S _{PI}	520000	17000	0	0
Anti-symm.	Q	S _{AQ}	0	0	23000	180
Reflection	Q	S _{RQ}	0	0	0	19
Rec. cav. PO	Q	S _{PQ}	0	0	0	4900

Alignment: Wavefront Sensing

Simple Michelson interferometer with deliberate arm asymmetry

WFS Application

Functional Block Diagram

RF Photodetectors

LIGO-G000155-00-D

ISC Table Assembly/Test

LIGO Control Model and Residual Motion Requirements

$$\vec{L}_{res} = M^{-1} (X_{sp} \vec{L}_{gnd} + \vec{L}_{therm} + AC\vec{S}_{shot})$$

M = 1 - ACP

LIGO-G000155-00-D

Zucker- ISC

13

Gain, Residual Motion & Noise Constraints

Degree of freedom	Residual deviation	Units	Coupling mechanism
$\delta Lm + (\pi/(2F))\delta lm$	1×10^{-13}	m _{rms}	Amplitude noise coupling
$\delta lm + (\pi/(2F))\delta Lm$	1×10^{-9}	m _{rms}	Amplitude noise coupling
$\delta(k_l \cdot Lp)$	9×10^{-6}	rad _{rms}	Arm cavity power reduction
$\delta(k_l \cdot lp)$	7×10^{-4}	rad _{rms}	Arm cavity power reduction

- Gain limits: TM internal resonances (f ~ 6.8 kHz, Q ~ 10^7)
- Bleedthrough of shot noise from "noisy" d.o.f. (e.g., *l*_)
- Electronics noise and dynamic reserve

LIGO-G000155-00-D

Differential loop design and performance

Performance Data	Lm	lm	Units
Gain at DC	205	110	dB
Unity gain bandwidth	330	43	Hz
Phase margin	66	55	deg
Gain at 9.48 kHz (5.58 kHz)	-140	(–141)	dB
Residual length deviation	10 ⁻¹⁴	5×10^{-12}	m _{rms}
Control signal at coil driver	3.1	0.13	μm _{rms}

LIGO-G000155-00-D

Residual contribution to noise

LIGO-G000155-00-D

Zucker- ISC

17

Controls Implementation: Digital Signal Processing

- Superior filter performance, flexibility, and stability, but with some tricky issues:
 - \Diamond dynamic range (especially output DAC)
 - ♦ speed/bandwidth (one path, high-speed laser feedback, remains analog)
 - \Diamond network bandwidth & time delays (local & 4 km)
- Hardware solution:
 - \bigcirc Pentek 6102 ADC/DAC (16-bit, low pipeline delay); f_s = 16,384 Hz
 - ♦ 550 MHz Pentium CPU running VxWorks operating system
 - ♦ Fiberoptic "Reflective Memory" network
 - ♦ EPICS supervisory command & control via Ethernet

ISC Signal Processing

LSC Master Control Screen

LIGO-G000155-00-D

WFS Master Control Screen

LIGO-G000155-00-D

Phase Noise Interferometer

PNI Digital Loop Test Result

Zucker- ISC

Single-arm cavity test on Hanford 2km X arm

- Tested ~ half of total WFS control system
- Digital controls, networks & software all worked flawlessly
- Exercised fast analog laser frequency controller
- Verified core optics meet specs (!)

LIGO WFS Matrix Element Measurement

- Simultaneously excite 4 test masses at different frequencies
- Read out responses of 4 wavefront sensor channels & derive matrix elements

Current Status

- Mode cleaner & laser frequency controls fully operational
- Core optics for recycled Michelson now aligned with arm cavities; *compound interference fringes achieved*
- Remaining electronics & software for full Wa 2k IFO length and alignment installed & tested
- Expect to start locking runs on recycled short Michelson this week
- Livingston 4k following close behind as bugs are worked out at Hanford