

Status of the LIGO Project

SLAC, August 1, 2000 Daniel Sigg, LIGO Hanford Observatory

LIGO-G000178-00-D

Basic Idea

General Relativity (Einstein 1916) predicts freely propagating transverse space-time distortions

Detection of Gravitational Waves

Strength: $\frac{\delta L}{L} \approx 10^{-20} \times \left(\frac{E_{\text{non-spherical}}^{\text{kinetic}}}{M_{\odot} \times c^2}\right) \times \left(\frac{15 \text{ Mpc}}{r}\right)$

Rough estimate of binary neutron star merger rate:

3 events/year within 200 Mpc $\Rightarrow \frac{\delta L}{L} \approx 10^{-22}$

List of Possible Sources

Coalescing Compact Binaries

- Neutron stars: large scale nuclear matter
- Black holes: strong field general relativity

- Burst Events
 - Supernova: asymmetric collapses
 - Gamma-ray burst events(?)

Periodic Sources

- Spinning neutron stars: rotational instabilities, r-modes, numerical hard
- □ Stochastic Background
 - Primordial big-bang background
 - Cosmic strings
 - Confusion limit
- □ The Unexpected

LIGO Sites

Arial View of the LIGO Sites

LIGO-G000178-00-D

Noise and Sensitivity

LIGO-G000178-00-D

Laser Interferometer Gravitational-wave Observatory

7

Stabilized Laser Source

- Master Oscillator
 Power Amplifier
 configuration
- Lightwave Model
 126 non-planar ring
 oscillator
- Double-pass, fourstage amplifier
- All solid state: amplifier utilizes 160 watts of laser diode pump power

Washington 2k Laser, Reference Cavity and Pre-Mode Cleaner

Laser Specifications and Performance

- WA-2k PSL > 15,000 hours continuous operation
 - □ Two power supply failures
- Frequency and PMC lock very robust
- **TEM**₀₀ power > 8 Watts
- □ Non-TEM₀₀ power < 10%
- □ Free-running frequency noise ~100 Hz/√Hz at 100 Hz. Falling as 1 / f
- Six units delivered to LIGO to date.

Seismic Isolation Installation Completed

LIGO-G000178-00-D

Seismic Isolation: Commissioning

- First-article tests and in-air transfer functions
- In-vacuum transfer functions begun at Livingston, ongoing at Hanford, using in-vacuum accelerometers
- Fine actuator transfer functions measured using 2-km Fabry-Perot

Input Optics: RF Modulators, Mode Cleaner & Faraday Isolator

- Impose phase-modulated RF sidebands
- Filter non-TEM₀₀ components of its input light
- Serve as a reference for frequency stabilization
- Suppression of amplitude noise and beam jitter
- Purify polarization

- Optical Isolation
- Provide sensing signal for IFO alignment control

LIGO-G000178-00-D

Large Optics: Metrology

LIGO-G000178-00-D Laser

Suspensions Suspension Installation & Commissioning

- Solved conflicts between bonding and cleaning procedures
- Developed reliable fixturing and alignment procedures on the job
- □ Installation is now smooth
- Mechanical Q's measured for mirror and pendulum modes look on target, but some instances of low Qs need follow-up
- Developed tuning procedures to minimize "cross-coupling" in shadow sensors/drivers

Interferometer Layout

LIGO-G000178-00-D

Interferometer Sensing and Control

Length sensing and control

- Monolithic photodetectors (Pound-Drever-Hall signal)
- Control 4 longitudinal degrees-of-freedom & laser frequency
- > Requirements:
 - differential arm length <10⁻¹³ m rms
 - $> 3 \times 10^{-7}$ Hz/ \sqrt{Hz} frequency noise @ 100 Hz
 - > controller noise for differential arm length < 10^{-20} m/ \sqrt{Hz} @ 150 Hz
 - and many more
- Alignment sensing and control
 - Wavefront Sensors (split photodetectors)
 - Digital control of 12 mirror angles & the input beam direction
 - Requirement: angular fluctuations <10⁻⁸ rad rms

Sensing and Control System

Data Acquisition and Diagnostics

2-km Single Arm Test

Alignment Fluctuations

Data From Locked Stretch on Hanford 2-km Y Arm

Laser Interferometer Gravitational-wave Observatory

22

Initial Results from Single Arm Tests

- + It works!
- + Optical parameters consistent with lab metrology
- Refined methodologies for aligning, tuning, modematching
- + RMS motions dominated by microseism as expected
- + Drifts consistent with earth tides in magnitude
- + Auto alignment system improved fringe alignment

Shadow sensor redesign to improve scattering sens. PSL/IO mount redesign to improve microphonics Alignment & mode matching redone on input optics Needed strong frequency noise suppression to deal with 350 Hz arm line width **Electronics saturates easily** "Butterfly" mode of mirror required "notching"

LIGO-G000178-00-D

Current Status

- Laser and mode cleaner controls fully operational
- > All hardware for Hanford 2-km interferometer installed
- Data acquisition and diagnostics systems fully operational
- Data analysis system installation started
- Livingston 4-km interferometer not far behind
- Locking of power-recycled (short) Michelson achieved
- Just started trying to add an arm cavity

LIGO, Built to Last

LIGO-G000178-00-D