

# Software to search for inspiralling compact binaries

# B.S. Sathyaprakash and D.Churches Department of Physics and Astronomy Cardiff University

LSC@LHO, 15-17 August 00

B.Sathyaprakash@astro.cf.ac.uk



http://www.astro.cf.ac.uk/pub/B.Sathyaprakash



#### Milestones for inspiral search General comments

- Initially, LAL standard was intimidating but I think it has turned out to be a useful standard, very helpful in debugging
- Documentation presently available as individual LATEXfiles
- Coming months, as we integrate UWM and Cardiff codes, should be painstaking as well as exciting
- ullet Generation of frequency-domain waveforms cost roughly 1/2 of filtering costs
- Algorithm to speed up template generation





#### Milestones for inspiral search Jan-Mar

- 1. Time-domain 2.5 PN T-approximant templates for point-masses. (no eccentricity and no spin) COMPLETED.
- 2. Frequency-domain T-approximants and time- and frequency-domain P-approximant templates for point-masses, all up to 2.5 PN order. (no eccentricity or spin) READY FOR SUBMISSION

B. Sathyap rakash@astro.cf.ac.uk



http://www.astro.cf.ac.uk/pub/B.Sathyaprakash



#### Milestones for inspiral search Apr-Jun

- Time-domain T-approximant templates with eccentricity. (up to whatever order waveforms are computed by then) READY FOR SUBMISSION
- 4. Template placement for point-mass, spin-less binaries BEHIND SCHEDULE BY A MONTH, ANOTHER 2 WEEKS





### Milestones for inspiral search Jul-Sep

- 5. Time-domain T-approximant templates for spinning binaries. (up to whatever order waveforms are computed by then)
- 6. 3.5 PN T- and P-approximants for point-masses. (This is only a days's job and can be done whenever the waveforms are available)





### Milestones for inspiral search Oct-May

- 7. Interpolation method
- 8. Template placement for multi-dimensional space including eccentricity
- 9. Template placement for multi-dimensional space including spins
- 10. Waveforms and template placement for multi-dimensional space including eccentricity and spins





## Template Generation – Demonstration

User needs to fill up the structure InspiralTemplate and call InspiralWave (Status status, REAL8Vector \*signal, InspiralTemplate params)

B.Sathyaprakash@astro.cf.ac.uk



### Template Generation – InspiralTemplate Structure

```
params.ieta = 1;
params.mass1 = 1.40;
params.mass2 = 1.40;
params.startTime = -1.e-8;
params.startPhase = 0.0;
params.fLower = 40.0;
params.fCutoff = 1000000.0;
params.tSampling = 4000.0
params.signalAmplitude = 1.0;
params.nStartPad = 0
params.nEndPad = 0;
params.method = one [two,three];
params.order = twoPointFivePN [newtonian, oneHalfPN, onePN, twoPN];
params.domain = TimeDomain [FrequencyDomain];
params.approximant = pade [taylor];
params.massChoice = m1Andm2 [totalMassAndEta,totalMassAndMu,t01,t02,t03,t04]
```

B.Sathyaprakash@astro.cf.ac.uk

