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EVOLUTION OF ACCRETING NEUTRON STARS

Consider a fluid displacement

�ξ = �f(r, θ)ei(mφ+σt) ∼ αR , m �= 0 , α � 1 .

It can induce other (m = 0, 1, . . .) perturbations of order α2. Friedman &

Schutz (1978a) showed that any mass and entropy conserving perturbation

of a Newtonian equilibrium star with angular momentum J∗ produces a

total angular momentum J = J∗ +
∫
ρ∆vφdV + Jc +O(α3). Thus we shall

adopt the decomposition

J = J∗(M,Ω) + (1−Kj)Jc , Jc = −Kcα
2J∗ . (1)

The canonical angular momentum obeys the relation

dJc/dt = 2Jc[(Fg(M,Ω)− Fv(M,Ω, T )] , (2)

where Fg is the gravitational radiation growth rate and Fv is the viscous

damping rate.

Conservation of angular momentum then requires that

dJ/dt = 2JcFg + J̇a(t) , (3)

where J̇a = jaṀ is the rate of accretion of angular momentum.

Combining these equations then gives

1
α

dα

dt
= Fg − Fv + [KjFg + (1−Kj)Fv]Kcα

2 −
(

ja
2J∗

)
Ṁ(t) , (A)(

I∗
J∗

)
dΩ
dt
= −2[KjFg + (1−Kj)Fv]Kcα

2 +
[
(ja − j∗)

J∗

]
Ṁ(t) ; (B)

where I∗(M,Ω) = ∂J∗/∂Ω and j∗(M,Ω) = ∂J∗/∂M .



Thermal energy conservation for the star gives∫
∂T

∂t
cvdV ≡ Cv(T )

dT

dt
= 2ẼcFv(Tv)+Kn〈Ṁ 〉c2 −Lν(Tν)−Lγ(Ts) , (4)

where the rotating frame canonical energy Ẽc = −(σ/m+Ω)Jc = KeΩJ∗α2.

In what follows we shall assume that thermal conductivity timescales are

short enough to give the relations Tv(T ) and Tν(T ). The nuclear heating

rate involves an average mass accretion rate.

The mass accretion rate can be estimated from accretion energy con-

servation: Lγ,acc ≈ (3GM/4R)Ṁ (t).

Since we are only considering conditions in which α2 � 1, we will have

two slower varying functions (than α and T ):

Ω(t) = Ω0[1 + ζΩ(t)] , |ζΩ| � 1 ; M(t) =M0[1 + ζM (t)] , |ζM | � 1 .

For any property Q∗ of the equilibrium star, let Q0 ≡ Q∗(M0,Ω0). Then

to lowest order in ζΩ, equation (B) becomes

1
Ω
dΩ
dt

∼= dζΩ
dt

= −2[KjFg + (1−Kj)Fv]K ′
cα

2 + Fa(t) , (B′)

where K ′
c = (J0/I0Ω0)Kc and Fa ≡ (ja − j0)(M0/I0Ω0)dζM/dt.



TEMPERATURE INDEPENDENT VISCOSITY

We now consider conditions in which ∂Fv/∂T = 0, and let

Fg(Ω0,M0) = Fv(Ω0,M0) ≡ F0 =⇒ Ω0, M0 .

(a) Evolution of α

Averaging over the fluctuations in the mass accretion rate and neglect-

ing the smaller contribution of ∂(Fg − Fv)/∂M , equations (A) and (B′)

give
d2x

dt2
− γ(x)

dx

dt
+
dV

dx
= 0 , x ≡ lnα , (5)

where

γ(x) = 2KcF0e
2x , V (x) = (p− n)F0[K ′

cF0e
2x − 〈Fa〉x] ,

with Fg ∝ Ωp, Fv ∝ Ωn. The sign of the damping term is opposite to that

of Levin(1999). We assume a superfluid core, with mutual friction [Fv =

τ̃−1
MF (Ω/

√
πG〈ρ〉)5, Lindblom & Mendell 2000] dominating the viscosity of

l = m = 2 r-modes (p = 6). The electron scattering viscosity is less if

Ω
Ωmax

(
T

109K

)2/5

>∼ 0.2
(

τ̃MF

4× 103 sec
)1/5

.

The governing radiation-viscous and accretion time scales are

τ0 ≡ 1
F0

∼ 104 sec , τa ≡ 1
〈Fa〉 ∼ 0.15

(
Ω0

Ωmax

)
M0

〈Ṁ 〉
>∼ 5× 106 yr ,

corresponding to the choice Ω0 = 0.25
√
πG〈ρ〉 ≈ 0.38Ωmax (τ̃MF ≈ 13 sec).

The minimum of the potential V (α) (Figure 1) gives an equilibrium

at an amplitude α0
∼= [τ0/(2K ′

cτa)]1/2 <∼ 2 × 10−5, but there is significant

overshoot (Figure 2) to

(αmax/α0)2 ∼= 2 lnα−1
min .



The seed amplitude is taken to be αmin. The period of the oscillation and

the fraction during which α > α0 are given by

P ∼=
√
8τ0τa lnα−1

min
>∼ 300 yr ,

∆P
P

∼= ln(2 lnα−1
min)

4 lnα−1
min

.

We have employed a slowly increasing energy E(t) ∼= F0〈Fa〉 lnα−1
min

by writing equation (5) in the form

dE

dt
≡ d

dt

[
1
2

(
dx

dt

)2

+ V (x)

]
= γ(x)

(
dx

dt

)2

.

It is found that this energy increases by a fractional amount ∆E/E ∼=
(32K2

c /9K
′
c)

1/2αmax per cycle.

(b) Evolution of Ω

To lowest order in ζΩ, equation (B′) now becomes

1
Ω
dΩ
dt

∼= dζΩ
dt

∼= −2K ′
cF0α

2 + Fa(t) .

Note the spin-up of Ω at the mass accretion rate and the more rapid grav-

itational radiation spin down when α becomes large (Figure 3). Averaging

over the period of the oscillation, we find that 〈α2〉 ∼= α2
0. We see that this

is also the value of α2 when Ω reaches its maximim or minimum. Finally,

integration during the spin-up phase shows that

ζΩ(max) ∼= −ζΩ(min) ∼= 1
2 〈Fa〉P .



(c) Evolution of T

The initial temperature T0 is determined from the balance of nuclear

heating and total luminosity, just before α begins to grow. We consider mass

accretion rates of the strongest X-ray sources, in which case crust neutrino

bremsstrahlung should dominate the luminosity [Lν = L0(T/T0)6]. Since

Cv = C0T/T0, equation (4) then gives

T̃
dT̃

dt
∼= KrF0α

2 − Fc(T̃ 6 − 1) , T̃ ≡ T/T0 , (6)

where Kr = 2KeΩ0J0/C0T0 ∼ Erot/Ethermal ∼ 105 and Fc = L0/C0T0 ∼
(103yr)−1 is a cooling rate.

The evolution of T (t) is shown in Figure (4a), and that of the heat-

ing and cooling terms of equation (6) in Figure (4b). Averaging over

one period of oscillation of the temperature, equation (6) gives 〈T̃ 6〉 =
Kr(F0/Fc)〈α2〉+ 1.

If instead we integrate from T̃min to T̃max and assume that T̃ 2
max �

T̃ 2
min, the heating dominates. We can then use the behavior

α ∼= αmax/ cosh[(2K ′
c)

1/2αmax(t− tmax)/τ0]

near αmax to find that

T̃ 2
max ≈ (8/K ′

c)
1/2Krαmax .

Finally, we integrate from T̃max to T̃min and also assume that T̃ 6
min � 1.

With cooling dominating, we obtain

T̃−4
min ≈ 4FcP .

We have also taken the time interval to be close to the period P of the

oscillation, which is a good approximation since the heating interval can be

seen to be much less than P .



BEHAVIOR NEAR EQUILIBRIUM

We define the equilibrium states Xi
0 of our dynamical variables

Xi(t) = {α,Ω, T} = Xi
0[1 + ζi(t)] , |ζi| � 1 , |α0| � 1

by the vanishing of the evolution equations (2), (3), (4). [Note that T0 will

be larger than that defined previously, and now C0 = Cv(T0).] The function

M(t) is separately specified, and we employ the averaged accretion rate.

The evolution equations are then

dζi/dt = Aijζj , ζi ∝ exp(λt) , ||Aij − λδij || = 0 .

Assume now that |∂Fv/∂T | ∼ Fv/T0, etc.

The coefficients of the eigenvalue equation λ3 + a2λ
2 + a1λ + a0 = 0

are

a2
∼= 1

C0

[(
∂L

∂T

)
0

− 2(Ẽc)0

(
∂Fv

∂T

)
0

]
∼ Krα

2
0F0 ,

a1
∼= 4(Ẽc)0F0

C0

(
∂Fv

∂T

)
0

∼ Krα
2
0F

2
0 ,

a0
∼= 4KcΩ0α

2
0F0

C0

[
∂(Fg − Fv)

∂Ω

]
0

(
∂L

∂T

)
0

− 16Kc(Ẽc)0α2
0F

2
0

C0

(
∂Fv

∂T

)
0

∼ Krα
4
0F

3
0 .

We have used the fact that the cooling rate Fc ∼ Krα
2
0F0.

Now we also employ the inequalities (Ẽc)0(mode energy)/Ethermal ∼
Krα

2
0
<∼ 10−4 ⇒ |a1| � a2

2 and Erot/Ethermal ∼ Kr � 1 to obtain the

eigenvalues

λ1,2
∼= −a2/2±

√−a1 , λ3
∼= −a0/a1 .

We have used the fact that |λ3| ∼ α2
0F0 � |λ1| ∼ |λ2|.



We now examine the two relevant possibilities. For cases such as su-

perfluid shear viscosity (produced by e− e scattering), with Ẽc > 0,

a1 ∝ (Ẽc)0(∂Fv/∂T )0 < 0 =⇒ λ1,2
∼= ±√−a1 ∼ K1/2

r α0F0 .

Thus this equilibrium is unstable, with a growth rate λ1 that is of the same

magnitude as found by Levin (1999).

The other possibility a1 > 0 =⇒ λ1,2
∼= −a2/2± i

√
a1. Thus stability

requires that a0 > 0 and a2 > 0. From their relations above, we see that

this means that the variation in the cooling rate with temperature must be

greater than both 1 and 2/(p−n) times the variation in the viscous heating

rate with temperature.



THERMAL TIME SCALES

Define the thermal time scales τi from thermal energy conservation:

1
∆V

∫
1
T

∂T

∂t
dV =

1
∆V

∫
1
cvT

[
∇ · (K∇T ) +

∑
a

ε̇a

]
dV

= ± 1
τcond

+
1

τvisc
+

1
τnucl

− 1
τν

for each region of the neutron star.

A) Core

τcond ∼ 0.4 yr , τvisc ∼ 10−8/〈α2〉 yr .

B) Inner crust

τcond ∼ 60 yr , τvisc ∼ 10−9/〈α2〉 yr , τnucl ∼ 5 yr , τν ∼ 6 yr .

C) Outer crust

τcond ∼ 10 yr .



UNCERTAINTIES IN NEUTRON STAR PHYSICS

1) The neutrino luminosity Lν(T ) (especially in the crust).

2) The heat capacity Cv(T ) and equation of state.

3) The superfluid transition temperature Tc(∼ 6× 108−9 K).

4) Thermal conductivities.

5) The viscous damping rate Fv(Ω, T ).

6) The fraction Kn of the accreted rest-mass energy that heats the crust.

7) The angular momentum accretion rate.

8) The relation between gravitational wave frequency and neutron star an-

gular velocity (Ω/Ωmax and general relativistic corrections).

Approach: embed the range of uncertainties within a parameterized de-

scription.






