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 sensitivity and 
Sensing: separate 
functions:

• Auxiliary degree-of-freedom s
> power recycling cavity length
> signal recycling cavity length

> Michelson length

> Arm cavity common mode

> (Arm cavity differential mode)

• Gravitational wave signal rea
> needs to be designed for high signal
good immunity to laser noise
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 a number of 
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resonant in
M-SRM cavity 
Auxiliary length
• Basic idea: add a frequency 

• This basic scenario presents
possibilities for extracting the

carrier

PM sbs
SSB
PM s

resonant
in PRC PR
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Variables and techn
• Asymmetry: smaller asymme

frequencies

• First PM frequency: 
  > lower frequency (closer to Michelso
tends to give better separation of Mich
  > SBs not exactly on center of PRC fr
length in an orthogonal RF phase from
length (amplitude vs phase detection)

• Detect small lengths using on
components that don’t enter 
> SB x SB: avoid the larger arm signal

> double demodulation to extract Mich
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l- lsr

-1 40

-0.6 40

-63 960

0 -76 960

1 -1 1.95

3 -1 -1.91

double demodulation
Example sensing m
• PM at 9 MHz (first fsr of a ~16.5 m MC) 

> asymmetry: 20 cm
> L+ sensed at  9 MHz at reflection po

> L- sensed at 180 MHz at antisymme

Port MHz L+ L- l+

Reflected 
port

171 -0.4 0 80

189 -0.4 0 80

PRC pickoff
171 -2 0 72

189 -2 0 18

Antisymmet-
ric port

171 0 0 0.

189 0 0 -0.
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ode cleaner
GW signal read
• 4 techniques

> frontal modulation, RF sidebands res
SRC

> frontal modulation, RF sidebands als
both arms
> DC readout

> Mach-Zehnder

• Any readout would likely requ
mode cleaner

> may expect ~10-3 of beamsplitter pow

> would several times this level in LO p
power ~10W
> better to clean up beam with output m
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DC readout
• Idea very simple: move slightly off dark fringe 

and measure baseband power fluctuations
> field at AS port due to phase offset and signal phase

> power is linear in the signal 

• Advantages
> benefits from filtering of double-cavity pole

> uses carrier only, which is less sensitive to thermal 
distortions in the ITMs

> photodetector doesn’t need to operate at RF

> output mode cleaner not constrained to pass RF sideband

EAS φ0 δφ+∝

δφ

PAS 2φ0 δφ⋅ φ0
2

+∝



8 of 12

 loss 

loss difference = 
5, 20, & 45 ppm
Optimum offset vs
difference
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Sensitivity & co
• Two control issues strongly a

sensing noise of auxiliary d.o
> excellent seismic isolation permits ac
10-10 – 10-11 m rms with a ~1 Hz contr

> eddy current damping of test mass s
avoidance of interferometric TM dampi
greater isolation of GW channel from a

• In the presence of these 2 fa
sensing requirement could be

~10-14 m/Hz1/2 



LIGO II – Some requirements
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Note ‘requirements’ stated in this talk are illustrative estimates. Most

are conservative but not all parameters are approved system

parameters. Some results were obtained using relatively untested

versions of software. Sensing parameters have not been finalised.
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Contents

• Noise couplings

• Mode-cleaners

• Photodiode requirements

• Thermal loading and configuration parameters
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Frequency noise requirements

• Frequency noise should contribute no more than 1% of the total

noise power.

• Frequency noise — Φ
−

coupling calculated using ”rsenoiseDC.m”

(Mason) and ”bench” with reference parameters.

• A conservative estimate of achievable loop gain was used to set

the requirement residual frequency noise for light stabilised to the

mode-cleaner length

• A conservative estimate of achievable loop gain was used to set

the requirement residual frequency noise for the PSL.

• Fall-back sensing scheme would require ∼ 10 times lower final

frequency noise, obtained by improvements to the references

and/or redistribution of loop-gain between the 3 loops

Slide 3 K.A. Strain, GEO:Glasgow



Frequency noise specifications
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Input mode-cleaner

• Input mode-cleaner ∼ 16 m long

• All RF modulations resonant (and an attempt will be made to

keep them under ∼ 200 MHz)

• Key displacement noise specification ∼ 3× 10−16m/
√

Hz at 10Hz

(Most stringent requirement found 3× 10−17m/
√

Hz for fall-back

RF scheme)
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Thermal effects and configuration parameters 1

• Target arm power ∼ 0.8 MW → 0.4 W coating heating per ITM

• Keep total heating as close to this as possible

• Sapphire: finesse as high as possible ∼ 1300, few W absorbed in

substrates

• Suprasil SV: finesse of at least LIGO I value. Can then neglect

substrate heating. Suggest use of same parameters as for sapphire

in mean time

Slide 6 K.A. Strain, GEO:Glasgow



Thermal effects and configuration parameters 2

• Active compensation of thermal distortion.

• Distorted beams still lead to residual higher order modes which

must be non-resonant in SR cavity.

• There is a minimum SR finesse, and hence arm cavity finesse.

• The minimum arm cavity finesse seems to be ∼ 50% higher than

that used in LIGO I.

Note: for constant frequency response, arm cavity and SR cavity

finesse scale proportionally over a wide range.
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Thermo-elastic distortion

• 0.4W in silica (α = 5.1× 10−7/K) produces relatively minor

effect (subject to confirmation)

• 2.4W in sapphire produces a much larger effect (∼ λ/10

distortion)

• Sapphire may not ‘cold start’.

• Melody/MATLAB results needed before effect is understood in

combination with thermal lensing and compensation methods
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Photodiode requirements

• Two types of diode needed

1 for Φ
−

sensing: ≤ 1 W, DC – 10 kHz, Q.E.∼ 0.9, low scatter,

good uniformity

∗ this is, in any case, needed for laser power stabilisation!

2 for other sensing 9MHz or 180MHz centre frequencies,

100 kHz minimum bandwidth, 100mW typical power, may

need more bandwidth for double demodulation at 180MHz

then 9MHz

All numbers to be confirmed
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Output mode-cleaner (preliminary)

• Suggest short (0.2m) monolithic ring cavity with a long (10m)

matching telescope (OPMC in HAM6)

• RF reflection locked and aligned to well defined LO mode.

• To pass 99% of correct mode. Assume 20 ppm loss per mirror,

Tcoupler = 0.01. (Finesse about 300.)

• Must pass DC with good amplitude stability. Thus length

stability requirement can be derived from AM requirement.

Slide 10 K.A. Strain, GEO:Glasgow



OP-MC displacement noise requirement

Estimate of tolerable displacement 

noise with interim parameters and
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Output mode-cleaner actuation

• Thermal tuning of a silica spacer (0.2m needs 5 K/FSR) is very

slow (hours, cooling is almost entirely by radiation).

• A PZT with ∼ 0.5 µm range would provide the faster actuator

needed to lock the mode cleaner quickly

Slide 12 K.A. Strain, GEO:Glasgow



Short output mode-cleaner isolation requirement

• mount cavity on a single 2Hz DC isolator (blade spring

pendulum)

• length change depends on stiffness of cavity compared to stiffness

of isolator, and suspension point motion.

• Assume 0.2m cavity has 10 kHz lowest mode, isolation is at least

(10000/2)2 > 2× 107 (at ≥ 10 Hz, except at suspension and

mechanical cavity modes).

• Suspension point seismic requirement is then ∼ 10−7m/
√

Hz at

10 Hz.
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Long output mode-cleaner option

• Require ∼ 105 isolation at 10Hz

• Achieved using triple pendulum with little or no pre-isolation

• Control more complicated (but also more flexible)

• Should probably work with short matching telescope

Slide 14 K.A. Strain, GEO:Glasgow
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