LIGO II: THE SECOND GENERATION INTERFEROMETERS

LIGO II: A QUANTUM LIMITED INTERFEROMETER

G000316

FROM LIGO I TO LIGO II

Design comparison:

Parameter	LIGO I	LIGO II
Equivalent strain noise, minimum	3x10 ^{–23} /√Hz	2x10 ⁻²⁴ /√Hz
Neutron star binary inspiral det. range ^a	19 Mpc	285 Mpc
Stochastic backgnd sens., $H_{100}^2 \cdot \Omega_{GW}$	3x10 ⁻⁶	1.5-8x10 ⁻⁹
Interferometer configuration	Power-recycled Michelson w/ FP arm cavities	LIGO I, plus signal recycling
Laser power at interferometer input	6 W	120 W
Test masses	fused silica, 11 kg	sapphire, 30-40 kg
Suspension system	single pendulum, steel wires	quad pendulum, silica fibers/ribbon
Seismic isolation system, type	passive, 4-stage	active, 2-stage
Seismic wall frequency	40 Hz	10 Hz
a numbers are 1.5x the 'BENCH' output to account for multiple interferometers		

FROM LIGO I TO LIGO II

Upgrade approach:

number of ifos? assume all three ifos are upgraded

increase 2-km ifo to 4-km? current recommendation is yes

response? make 2 optimized for NS-NS inspiral detection, 3rd to be a tunable narrowband instrument

phasing? implement one new ifo first (18 mths?), then the second two in parallel

when? current thinking is start of 2006 for first ifo

Design approach

motivated by what is technically feasible, though still very challenging -> achieving a quantum limited ifo, e.g.

motivated by astrophysical benchmarks -> heavy use of 'BENCH' program to calculate detection sensitivities

ADVANCES IN SEISMIC NOISE

Goal taken as 10⁻¹⁹ m/√Hz at 10 Hz

corresponds to level of suspension thermal noise

- very close to gravity-gradient noise around 10 Hz
- ground noise attenuation of 10¹⁰ required

□ Active seismic isolation

provides ~1/3 of the xo required attenuation

➤ provides ~10³ reduction of rms at lower frequencies, crucial for controlling technical noise sources

ADVANCES IN THERMAL NOISE

□ Suspension thermal noise

 \blacktriangleright fused silica fibers, ~10⁴x lower loss than steel wires

ribbon geometry - more compliant along relevant direction

Internal thermal noise

Sapphire test masses:

> much higher Q: $2x10^8$ vs $2-3x10^6$ for LIGO I silica

BUT, higher thermoelastic damping (higher thermal conductivity and expansion coeffs); can counter by increasing beam size (more from Kip)

Fused silica test masses:

intrinsic Q can be much higher: ~5x10⁷ ? (avoid lossy attachments)

increasing beam size also helps, though more slowly

A NARROWBAND INTERFEROMETER: 2ND WA IFO?

LIGO II DATA

Sampling rate

no increase over present 16384 S/sec for the GW channel; upper cutoff frequency is 1.5-2kHz for LIGO I & II

□ Number of channels:

increases due to added complexity: 2-3 x ?

Number of bits/dynamic range

determined by (quasi)-periodic signals (violin modes of fibers), relative to the broadband background (shot noise)

thermal motion from a single suspension fiber:

 $x^2 = \frac{k_B T}{2M\omega_v^2(\omega_v/\omega_p)^2} \longrightarrow x_v \approx 3 \times 10^{-18}$ m-rms, from 500 Hz mode

► rss all 16 wires: $x_v/x(f) \approx 10^{-17} \text{m}/3 \times 10^{-20} \text{m}/\sqrt{\text{Hz}} = 300 \sqrt{\text{Hz}}$

▶ present 16-bit ADCs are OK: $1-5 \times 10^6 \sqrt{\text{Hz}}$, ~3 orders of mag. from rms to peak (~2 orders for a narrow-band ifo)

SUMMARY

In its first few hours of operation, the physics reach of LIGO II will exceed that of the 1 year initial LIGO science run

□ Much R&D still to be done!

sapphire materials development

- operation at high power: thermal compensation
- control and readout systems for signal recycling