

R&D for Advanced LIGO 2002-2006 Presentation to PAC

David Shoemaker & Dennis Coyne LIGO Lab December 13, 2000

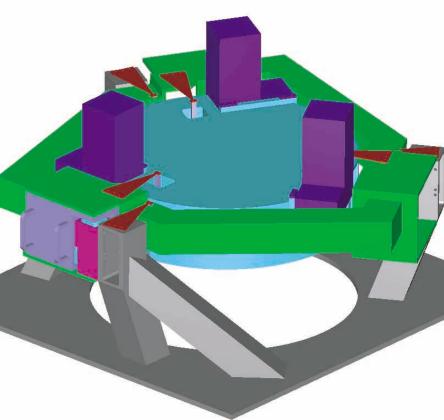
G000344-00-M

Overview

- Evolution intrinsic to LIGO mission
- Next step in detector design:
 - » Of astrophysical significance if it observes GW signals or if it does not
 - » Limits of reasonable extrapolations of detector physics and technologies
 - » Leads to a realizable, practical instrument
- Much effort is inextricably entwined with LSC research
 - » LIGO Lab provides the majority of the on-task manpower
 - » Lab also coordinates, provides infrastructure/engineering

Overview

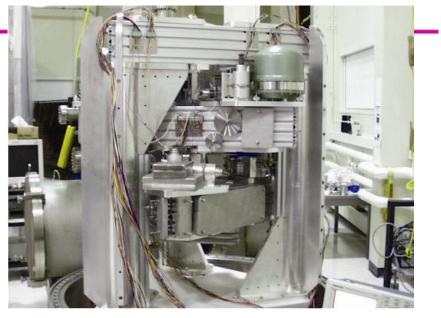
- Talk objectives:
 - » Show scope and character of effort
 - Touch briefly on all R&D topics
 - » More complete illustrative discussion of seismic isolation
- Talk organization:
 - » Mechanical aspects of design: Isolation, Suspension, Thermal noise, and system tests
 - » Optics: Laser, Test Masses, Input Optics, Auxiliary Optics
 - » Sensing and control: Design and prototype tests
- Detailed technical, schedule, and budget information available


Active Seismic Isolation R&D (SEI): Requirements

- Goal: render seismic noise a negligible limitation to GW searches
 - » Other 'irreducible' noise sources limit sensitivity to uninteresting level for frequencies less than ~20 Hz
 - » Suspension and isolation contribute to attenuation
 - » Choose to require a 10 Hz 'brick wall'
- Goal: reduce or eliminate actuation on test masses
 - » Actuation source of direct noise, also increases thermal noise
 - » Seismic isolation system can reduce RMS/velocity through inertial sensing
 - » Acquisition challenge greatly reduced
 - » Choose to require RMS of <10^-9 m (order of fringe width)

SEI: Conceptual Design

- Two in-vacuum stages in series, external slow correction
- Each stage carries sensors and actuators for 6 DOF
- Stage resonances ~5 Hz
- High-gain servos bring motion to sensor limit in GW band, reach RMS requirement at low frequencies
- Similar designs for BSC, HAM vacuum chambers; provides optical table for flexibility


SEI: Organization

- Initial work done by teams at Caltech, MIT, Stanford, LSU, JILA – significant input from LSC teams, suspension working group
- Strategic organization by Lab of continued development at LLO, with continued LSC scientific leadership (Giaime/LSU)
- Engineering effort and prototype fabrication managed by LLO (Stapfer)
- Next prototype to be installed and tested in Stanford ETF (Lantz)
- Installation and test at MIT LASTI to be performed by development team of engineers/scientists, plus MIT LASTI staff

SEI: Progress and Plans

- Parallel design effort on passive, active systems
 - ✓ 4Q99: Draft requirements and interface established
 - ✓ 2Q00: SAS reference design, prototype tests
 - ✓ 2Q00: Active reference design, prototype tests
 - ✓ 2Q00: Choice of design to pursue
- Prototyping and test of active systems
 - ✓ 3Q00: All 12 DOF active system locked
 - ✓ 4Q00: initial design and demonstrator bid package ready
 - » 4Q01: demonstrator test complete (at Stanford)
 - » 3Q02: HAM prototype standalone testing completed (MIT LASTI)
 - » 1Q03: BSC prototype standalone testing completed (MIT LASTI)

F

SEI: Manpower and equipment

Y02	Staff	Org	Adv. R&D (FTE)	LSC Support R&D	Operations (FTE)
-	Active Seismic Iso				
	Gerry Stapfer	LLO			0.5
	Joe Giaime	LSU			
		MIT			
	Sci & PD	CIT	0.5		
		MIT			
	UG & Grads	CIT			
		MIT			
		CIT			0.5
	Eng & Techs	LLO			3
	То	tals (FTE):	0.5	0	4
	Equip. & Su	pplies (\$K)	\$0	\$821	\$0

N.B.: Does not include LSC research staff.

Suspension Research (SUS)

- Adopting a multiple-pendulum approach
 - » Allows best thermal noise performance of suspension and test mass; replacement of steel suspension wires with fused silica
 - » Offers seismic isolation, hierarchy of position and angle actuation
- Close collaboration with GEO (German/Scots) GW group
 - » Similar design used in GEO-600, being installed now
 - » Great strength in that group to be applied to initial design
 - » LIGO takes over design as we deal with fabrication/installation issues
- Schedule highlights:
 - » 1Q01: Install first fused silica GEO-600 suspension
 - » 2Q02: Controls prototypes complete, in testing
 - » 2Q03: Noise prototypes complete, in testing

Thermal Noise Interferometer (TNI)

- Direct measurement of thermal noise, at LIGO Caltech
 - » Test of models, materials parameters
 - » Search for excesses (non-stationary?) above anticipated noise floor
- In-vacuum suspended mirror prototype, specialized to task
 - » Optics on common isolated table, ~1/2 m arm lengths
- Schedule highlights:
 - ✓ 4Q00: TNI first lock
 - » 2Q01: TNI studies for initial LIGO completed
 - » 2Q01: Sapphire, with Fused Silica suspensions, installed
 - » 1Q03: TNI final Sapphire/fused silica results

Stochastic noise system tests: LASTI

- Full-scale tests of Seismic Isolation and Test Mass Suspension
 - » Takes place in LASTI at MIT: LIGO-like vacuum system
 - » Allows system testing, interfaces, installation practice
 - » Characterization of non-stationary noise, thermal noise
- Subsystem support to LASTI system tests
 - » teams learn how their system works, installs, etc.
 - » MIT support of infrastructure, and collaborative shakedown and test
- Schedule highlights:
 - ✓ 4Q00: Vacuum system qualified, seismic supports in place
 - » 4Q01: 'infrastructure' Laser, test cavity, DAQ, etc. tested
 - » 3Q02: HAM isolation testing completed
 - » 2Q03: Suspensions Noise prototypes installed
 - » 2Q04: integrated Isolation/suspension testing completed
 - » 1Q05: PSL-Mode Cleaner integrated performance test completed

(STO, SUS, TNI, SEI)

FY02

Staff	Org	Adv. R&D (FTE)	LSC Support R&D	Operations (FTE)		
ISOLATION						
	MIT	1	0	2.4	3.4	8.1
Sci & PD	CIT	3	0	1.7	4.7	0.1
	MIT	3	0	0	3	5
UG & Grads	CIT	2	0	0	2	5
	MIT	0	0	2.75	2.75	
	CIT	0	0	6.9	6.9	13.15
Eng & Techs	LLO	0	0	3.5	3.5	
Totals (FTE):		9	0	17.25	26.25	
Equip. & Supplies (\$K)		\$57	\$1,535	\$0	\$1,592	

N.B.: Does not include LSC research staff.

G000344-00-M

Advanced Laser R&D (LAS)

- Require optimal power, given fundamental and practical constraints:
 - » Shot noise: having more stored photons improves sensitivity, but:
 - » Radiation pressure: dominates at low frequencies
 - » Thermal focussing in substrates: limits usable power
- Optimum depends on test mass material, 80 180 W
- Power amplifier or MOPA topology in trade study
- Laser Zentrum Hannover/GEO to take lead; LIGO Lab supplies requirements, interface, and test
- Schedule highlights:
 - » 4Q01: laser diode tests done / selection
 - » 1Q02: 100 W demonstration
 - » 2Q02: Laser concept downselect
 - » 2Q04: Install advanced LIGO PSL in the LASTI facility

Advanced Core Optics R&D (OPT)

- A key optical and mechanical element of design
 - » Substrate absorption, homogeneity, birefringence
 - » Ability to polish, coat
 - » Mechanical (thermal noise) performance, suspension design
 - » Mass to limit radiation pressure noise: ~30-40 Kg required
- Two materials under study, both with real potential
 - » Fused Silica: very expensive, very large, satisfactory performance; familiar, non-crystalline
 - » Sapphire: requires development in size, homogeneity, absorption; high density (small size), lower thermal noise
- Caltech LIGO Lab leads effort, strong LSC input on materials/tests
- Schedule highlights:
 - ✓ 2Q00: m-axis birefringence measured
 - ✓ 3Q00: Initial sapphire refraction index homogeneity measurement
 - » 4Q01: Order LASTI SUS prototype sapphire & fused silica blanks
 - » 2Q02: Selection of test mass material
 - » 3Q03: Dedicated coating chamber installed and commissioned *PAC Mtg: proposed Adv. R&D FY 02-06*

Input Optics System R&D (IOS)

- Subsystem interfaces laser light to main interferometer
 - » Modulation sidebands applied for sensing system
 - » Beam cleaned and stabilized by transmission though cavity
 - » Precision mode matching from ~0.5 cm to ~10 cm beam
- Challenges in handling high power
 - » isolators, modulators
 - » Mirror mass and intensity stabilization (technical radiation pressure)
- University of Florida takes lead, GEO suspensions, LIGO controls
- Schedule highlights:
 - ✓ 3Q00: Isolator demonstrated (<35 dB) @ 50 W
 - » 2Q02: Demonstration of prototype phase modulation method
 - » 4Q02: Thermal lensing compensation results, optical layout chosen
 - » 1Q04: Install advanced LIGO IO components at LASTI
 - » 1Q05: PSL-Mode Cleaner integrated performance test completed

Auxiliary Optics R&D (AOS)

- Subsystem handles output beams from interferometer
 - » Desired beams matched into photodetectors
 - » Undesired beams 'dumped' with negligible backscatter
- Two new challenges requiring R&D:
 - » Substrate thermal focus compensation
 - » Photon actuator for test mass
- LIGO Lab activity
- Thermal focus Schedule Milestones
 - » 1Q01: Proof-of-concept, scaled experiments initial results
 - » 3Q02: Full Scale Radiative Compensator
 - » 4Q04: Full scale Directed Beam Actuation tests complete
- Photon actuator Schedule Milestones
 - » 2Q02: Initial demonstration system assembled
 - » 2Q03: Preliminary test results completed
 - » 2Q04: Final test results on iterated design completed

Lasers & Optics R&D (LAS, OPT, IOS, AOS)

FY02

Staff	Org	Adv. R&D (FTE)	LSC Support R&D	Operations (FTE)		
LASERS & OPTICS	5					
	MIT	0	0	0.08	0.08	4.33
Sci & PD	CIT	2	0	2.25	4.25	4.55
	MIT	1	0	0	1	3
UG & Grads	CIT	2	0	0	2	5
	MIT	0	0	0	0	2
Eng & Techs CIT		0.5	0	1.5	2	2
Totals (FTE):		5.5	0	3.83	9.33	
Equip. & Supplies (\$K)		\$800	\$1,687	\$0	\$2,487	

N.B.: Does not include LSC research staff.

G000344-00-M

Advanced Interferometer Sensing & Control (ISC)

- Responsible for the GW sensing and overall control systems
- Addition of signal recycling mirror increases complexity
 - » Permits 'tuning' of response to optimize for noise and astrophysical source characteristics
 - » Requires additional sensing and control for length and alignment
- Shift to 'DC readout'
 - » Rather than RF mod/demod scheme, shift interferometer slightly away from dark fringe; relaxes laser requirements, needs photodiode develop
- Requires both proof-of-principle and precision testing (40m)
- LIGO Lab leads, with contributions from LSC, esp. GEO
- Schedule Highlights:
 - » 2Q01: Design Requirements Review
 - » 2Q02: Tabletop DC readout test results
 - » 2Q03: GEO 10m prototype test results/review
 - » 4Q03: Final design complete

40 m RSE Experiment (40m)

- Precision test of selected readout and sensing scheme
 - » Employs/tests final control hardware/software
 - » Dynamics of acquisition of operating state
 - » Frequency response, model validation
- Utilizes unique capability of Caltech 40 meter interferometer --long arms allow reasonable storage times for light
- Schedule Highlights
 - ✓ 4Q00: LIGO 40 m Lab expansion completed
 - ✓ 1Q01: LIGO 40 m active isolation systems installed
 - » 1Q01: LIGO 40 m Vacuum Envelope commissioned
 - » 1Q01: LIGO 40 m PSL installed
 - » 4Q02: LIGO 40 m suspensions installed
 - » 2Q04: LIGO 40 m RSE experiment completed; further characterization studies & ISC prototype testing continues

Advanced Controls & System Identification (SID)

- Modern controls approach to optimization of system
- Interfaces to existing infrastructure
- Allows both noise performance and robustness to be explored
- Can be static, or apply Adaptive Control techniques if proven
- Schedule Highlights
 - » 4Q02: System identification for the initial LIGO detector
 - » 4Q03: Adaptive control for the initial LIGO detector
 - » 1Q04: Application to 40m configuration testbed
 - » 2Q05: System identification for the advanced LIGO configuration

Advanced Interferometer Systems, Sensing & Control (ISC, 40m, SID, SYS)

FY02

Staff	Org	Adv. R&D (FTE)	LSC Support R&D	Operations (FTE)			
Advanced Interfer	ometer Sy	stems, Sens	sing & Control	(ISC)			
	MIT	0	0	1.67	1.67	6.87	
Sci & PD	CIT	2	0	3.2	5.2	0.07	
	MIT	1	0	1	2	5	
UG & Grads	CIT	3	0	0	3	C	
	MIT	0	0	0.75	0.75	10.23	
Eng & Techs	CIT	0	0	9.48	9.48	10.23	
Totals (FTE):		6	0	16.1	22.1		
Equip. & Supplies (\$K)		\$275	\$0	\$0	\$275		

N.B.: Does not include LSC research staff.

G000344-00-M

Total LIGO Lab R&D

FY02

Staff	Org	Adv. R&D (FTE)	LSC Support R&D	Operations (FTE)	Totals (FTE, \$K)				
TOTAL fo	TOTAL for R&D								
	MIT	1	0	4.15	5.15	21.3			
Sci & PD	CIT	9	0	7.15	16.15	21.5			
UG &	MIT	5	0	1	6	14			
Grads	CIT	8	0	0	8	17			
	MIT	0	0	3.5	3.5				
Eng &	CIT	0.5	0	18.13	18.63	25.63			
Techs	LLO	0	0	3.5	3.5				
T	otals (FTE):	23.5	0	37.43	60.93				
Equip.	& Supplies	\$1,202	\$3,222	\$0	\$4,424				
			Î	MIT	14.65				
				CIT	42.78				
				LLO	3.5				

N.B.: Does not include LSC research staff. G000344-00-M PAC Mtg: proposed Adv. R&D FY 02-06

Total Campus Detector Staff Support to Observatories & Data Analysis

FY02

Staff	Org	Adv. R&D (FTE)	LSC Support R&D	Operations (FTE)	Totals (FTE)	
TOTAL Ca	ampus Dete	ector Staff Su	upport to Obse	rvatories & E	Data Ana	lysis
	MIT			4.35	4.35	12.53
Sci & PD	CIT			8.18	8.18	12.55
UG &	MIT			2	2	2
Grads	CIT			0	0	2
Eng &	MIT			0	0	2.87
Techs	CIT			2.87	2.87	2.07
Totals (FTE):		0	0	17.4	17.4	

N.B.: Does not include support by LSC research staff or the LIGO Lab/CIT Data Analysis Group