Readout techniques

- ☐ GW channel readout methods:
 - frontal RF modulation, resonant in PRC, as in LIGO I
 - frontal RF modulation, doubly resonant
 - frontal RF modulation, '1.5' resonant (resonant in one arm)
 - external modulation with Mach-Zehnder
 - DC offset
- □ There is a large payoff to using a scheme which doesn't suffer from RF sideband noise, as in LIGO I
 - taking advantage of the double-cavity pole filtering gives a factor of ~100 greater immunity to input intensity and frequency noise

DC offset readout

Idea is very simple:

- move slightly off the dark fringe and measure baseband power fluctuations directly
 - field at the AS port due to phase offset and signal phase:

$$E_{AS} \propto \phi_0 + \delta \phi$$

power is linear in the signal δφ:

$$P_{AS} \propto 2\phi_0 \cdot \delta\phi + \phi_0^2$$

 output mode cleaner would be used to reduce PD light power

□ Advantages:

- ◆ no loss of sensitivity from imperfect demodulation (demod waveform is the inverse of the mod waveform!; a ~2dB effect)
 - benefits from the filtering of the double-cavity pole
- uses carrier only, which is less sensitive to thermal distortions in the ITMs
 - photodetector doesn't need to operate at RF
 - output mode cleaner not constrained to pass RF sidebands

DC readout & amplitude noise

Coupled cavity pole frequency:

$$f_{cc} \approx \frac{f_c}{2G_{rec}} = \frac{90 \text{ Hz}}{200} = 0.45 \text{ Hz}$$

- at 150 Hz (where shot noise becomes dominant), filtering factor is 330x
- thus, RIN (relative intensity noise) at ifo input can be up to 30x larger than the RIN of shot-noise in the detected beam, and still be 10x below shot-noise at output
- eg, if 1W is detected at AS port, input beam can have the RIN of a 1mW shot-noise limited beam
- □ AS port power (contrast defect)
 - from BBochner's thesis, $P_{as}/P_{in} = 0.01$ for lambda/800 mirrors and $R_{srm} = 0.7$
 - ◆ however, output mode cleaner will suppress all higher order modes by at least a factor of 10³, leaving only the TEM₀₀ component
 - TEM00 component: $P_{as}/P_{bs}=(\delta r)^2/4$, where dr is the reflectivity difference between the two arms; if dr = 0.2%, then $P_{as}=10^{-6} x 10 kW=10 mW$
 - ◆ need to do proper optimization of 'local oscillator' power, but will probably need (10-100)xP_{as} = 0.1-1W detected
 - phase offset: 1-2mrad; equivalent to arm length offset of 1-3 x 10⁻¹² m

Frequency stability req'd

- □ In present scheme, frequency coupling is dominated by δr (TEM₀₀ c.d.); this effect should disappear with dc readout
- ☐ Left with coupling to unbalanced storage times
 - In LIGO I, the ratio of these two terms is:

$$\frac{S_{\delta \tau}}{S_{\delta r}} = \frac{(\delta \tau / \tau)}{\delta r} \cdot \frac{1 - r_c}{1 + s_c} \cdot \frac{f_{cc}}{f_c}$$
$$= \frac{(\delta \tau / \tau)}{\delta r} \cdot \frac{10^{-2}}{1 + s_c}$$

- for the same level of unbalance, $\delta \tau$ term is ~100x smaller
- thus, frequency noise requirement compared to LIGO I may be:
 - 10x more stringent due to increased strain sensitivity
 - 100x more relaxed due to weaker coupling
 - giving 3×10^{-6} Hz/ $\sqrt{\text{Hz}}$ at 150 Hz

proper calculation needs to be done!						