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FEA model: uncorrecte
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 of Thermal 
re Optics

  

re bias on LIGO I 
temperature

  

r, ~3X tighter net 

  

repolished bias, dynamic 

    

y not be adequate

              

 absorption (so far...)
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Adaptive Compensation
Lensing in LIGO II Co

¥ Thermal lensing forces polished-in curvatu
core optics for cavity stability at operating 

¥ LIGO II will have ~20X greater laser powe
figure requirements

- higher order (nonspherical) distortions significant; p
refocusing not adequate to recover performance

- possible bootstrap problem on cold start

¥ Test mass & coating material changes ma
- SiO2 has low kth, high dn/dT, but low bulk absorption

- Al2O3 has higher kth, moderate dn/dT, but  high bulk

- coating improvements still speculative
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hase/OPD errors

        

oise
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al for spurious noise

    

noise is a concern
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Sensing & Actua

¥ Extend LIGO I “WFS” to spatially resolve p
- scanning “Phase Camera” (Adhikari, MIT)

- staring “Bullseye WFS” (Mueller, UF)

¥ Thermal actuation on core optics
- Noncontact actuator with minimal spurious phase n

- Time constants matched to disturbance timescales

¥ Two actuators in development
- Passive radiative ring heater and low-emissivity shie

Ð Only copes w/axisymmetric errors, but minimal potenti

- Scanned directed beam

Ð Arbitrary spatial correction, but induced thermoelastic 
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FEA model w/correction: 
cylindrical radiation

  Nichrome Ring Heater
          r=6.5 cm
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at MIT
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AOTC Experiment 

VACUUM (10^-6 mBar)

Test Optic
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at MIT
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AOTC Experiment 
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at MIT
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AOTC Experiment 
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OPD vs. t, ring  heater w/S
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Directed Beam Compen
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c-axis): 
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(neat sideshow: accurate
sapphire material pro
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Thermal Compensatio

¥ Total heat deposited & net temperature ris
◊ ÒEfÞcientÓ compensation will ~ double net ∆T w.r.t. a

◊ 30K total rise plausible, would increase kT noise 5%

¥ Noise
◊ Thermoelastic response to varying beam intensity/p

◊ Developing time-dependent thermal FEA to model 

¥ Absorption spatial inhomogeneity
◊ Determines pixellation, complexity/depth of compen

¥ Net efficacy & trade with optics/material im
◊ Depends on sensitivity of IFO sensing to Þgure erro
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Thermal compensation: S

¥ 1QÕ01: Proof-of-concept experiment initial

◊ Model validation for FE code & parametrizations fo
Melody

◊ VeriÞcation of time dependence to feed E2E simula

◊ Improved requirements deÞnition

¥ 3QÕ02: Full scale radiative compensator d

◊ Engineering prototype at full mechanical scale (time

◊ Also demo main parts of wavefront error sensing te

¥ 4QÕ04: Full scale directed beam actuation

◊ Exercise actuation basis transform, optimum pixeliz
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l & thermal 

n: 1W? 10W?

to 4x incident on unlock

suming Faraday isolator)  
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Photodetectors: optica
requirements

¥ CW power handling
- “Dark” port with/without active thermal compensatio

¥ Transient power handling
- reflection from PRC, MC ; full incident power, spike 

¥ quantum efficiency
- shoot for 90% (trades w/laser power, but poorly)

¥ backscatter
- need 10-100 X improvement over LIGO I diodes (as
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onceptual)

temp. rise, square 
pulse approx.  

pk. junction temp
sq. pulse approx. 

junction breakdown?
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PD  power transients (c
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MHZ, NG@ 100 MHz)
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Electrical & signal requir

¥ RF frequency fRF  ≈ 100 MHz (for likely sc

¥ SNR (i.e., ‘shot:electronic noise ratio’)

- 

- damage  -> lower IDC

- SNR -> raise IDC

- e.g.,  1.2 W, 1 nV/√Hz, N=10 
diodes  =>   

- EGG G30642G, 100 MHz:  (OK @29 
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Electrical & signal (DC

¥
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Photodetector backs
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n at LSC 3/00

nd steady-state power

nt power

termine frequencies

d by D. Jackrel at 

 /diode, B < 10-6 sr-
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LIGO II Photodetectors: S

¥ Requirements definition & simulation
- First-cut Requirements draft circulated for discussio

- additional Melody & FFT simulations required to bou

- additional E2E simulations required to bound transie

- selection of modulation/readout configuration will de

¥ Device fabrication
-  High power custom RF devices now being fabricate

Stanford

¥ Testing

- MIT PD test rigs upgraded to f > 125 MHz, P > 0.5 W
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 RMS ?
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Likely PD Specs for LIGO
Sensitivity

Parameter LIGO I LIGO

Steady-state power 0.6 W 3

a. Assumes significant  improvement in contrast defect & 
tion of thermal lensing

Transient damage 3 J / 10 ms 100 J 

Signal/Noise 1.4 x 1010 Hz1/2 3.1 x 1

Quantum efficiency 80% 9

Spatial uniformity 1% RMS 0.1%

Surface backscatter 10-4 /sr 10

b. Assumes Faraday isolator and  seismic isolation of dete
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Test Masses

asses (magnets 
ation bandwidth for 

arionetteÓ) may not 

e susceptibilities 
fect, nonlinear 

 non-contact drive 
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Photon Recoil Drive for 

¥ Problem: eliminating attachments to test m
etc.) in LIGO II may leave insufÞcient actu
angle/length control actuation

¥ Pure actuation from upper stages ( a la Òm
offer sufÞcient bandwidth (TBD)

¥ Electrostatic actuators promising, but nois
are hard to exclude conclusively (patch ef
upconversion,...)

¥ Photon recoil drive offers relatively simple
alternative with well-deÞned limits
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Photon recoil drive dyn

¥ Dynamic range follows from power availab

¥ Noise due to intensity ßuctuations constra
goal, e.g.

¥ Taking ÒreasonableÓ RIN (e.g., shot noise 
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Low-RIN photon drive l

¥ Cascaded intensity stabilization stages 

¥ Spatial Þlters, int. spheres to insure ÒtrueÓ 

PD ~

AM IN
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Photon drive issues &

¥ How much peak force is actually required?

◊ Depends on detailed apportionment of corrective si
intermediate stages

◊ Depends on detailed ÒcrossoverÓ behavior and stab

◊ Also depends on narrowband features with high RM
eigenmodes, internal mirror & suspension wire mod

¥ Can low enough intensity noise be achiev

◊ Probably, main IFO laser is more demanding

◊ Question of technical trades, cost & complexity
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Photon Actuator Mi

¥ 2QÕ02: Initial demonstrator system commi

◊ Single stage AM stabilization

◊ Steerable White cell geometry & dynamics (small-s

◊ Modeling completed for primary design requiremen

¥ 2QÕ03: Preliminary test results

◊ Design iteration: dynamic range, power, bounce nu

◊ Control speciÞcation

¥ 2QÕ04: Final test results on iterated design

◊ SufÞcient to complete Þnal design
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Phase vs. DC out
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Linearizing RF respon
feedforward IDC bias co
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	FEA model: uncorrected SiO2 ITM
	Adaptive Compensation of Thermal Lensing in LIGO II Core Optics
	• Thermal lensing forces polished-in curvature bias on LIGO I core optics for cavity stability at...
	• LIGO II will have ~20X greater laser power, ~3X tighter net figure requirements
	- higher order (nonspherical) distortions significant; prepolished bias, dynamic refocusing not a...
	- possible bootstrap problem on cold start

	• Test mass & coating material changes may not be adequate
	- SiO2 has low kth, high dn/dT, but low bulk absorption
	- Al2O3 has higher kth, moderate dn/dT, but high bulk absorption (so far...)
	- coating improvements still speculative


	Sensing & Actuation
	• Extend LIGO I “WFS” to spatially resolve phase/OPD errors
	- scanning “Phase Camera” (Adhikari, MIT)
	- staring “Bullseye WFS” (Mueller, UF)

	• Thermal actuation on core optics
	- Noncontact actuator with minimal spurious phase noise
	- Time constants matched to disturbance timescales

	• Two actuators in development
	- Passive radiative ring heater and low-emissivity shields
	– Only copes w/axisymmetric errors, but minimal potential for spurious noise

	- Scanned directed beam
	– Arbitrary spatial correction, but induced thermoelastic noise is a concern



	Thermal OPD Actuators
	Implementation (SRM and ETM’s not shown)
	FEA model w/correction: ring heater + cylindrical radiation shield
	AOTC Experiment at MIT
	AOTC Experiment at MIT
	AOTC Experiment at MIT
	OPD vs. t, ring heater w/SiO2 test optic
	Directed Beam Compensation Tests
	(neat sideshow: accurate constraint of sapphire material properties)
	Thermal Compensation: Issues
	• Total heat deposited & net temperature rise
	× “Efficient” compensation will ~ double net DT w.r.t. ambient
	× 30K total rise plausible, would increase kT noise 5%

	• Noise
	× Thermoelastic response to varying beam intensity/position (for sapphire)
	× Developing time-dependent thermal FEA to model better

	• Absorption spatial inhomogeneity
	× Determines pixellation, complexity/depth of compensation required

	• Net efficacy & trade with optics/material improvements
	× Depends on sensitivity of IFO sensing to figure errors & their spatial scales


	Thermal compensation: Status & plan
	• 1Q’01: Proof-of-concept experiment initial results
	× Model validation for FE code & parametrizations for efficient incorporation in Melody
	× Verification of time dependence to feed E2E simulation
	× Improved requirements definition

	• 3Q’02: Full scale radiative compensator demonstration
	× Engineering prototype at full mechanical scale (time constants, etc.)
	× Also demo main parts of wavefront error sensing technology

	• 4Q’04: Full scale directed beam actuation demonstration
	× Exercise actuation basis transform, optimum pixelization


	Photodetectors: optical & thermal requirements
	• CW power handling
	- “Dark” port with/without active thermal compensation: 1W? 10W?

	• Transient power handling
	- reflection from PRC, MC ; full incident power, spike to 4x incident on unlock

	• quantum efficiency
	- shoot for 90% (trades w/laser power, but poorly)

	• backscatter
	- need 10-100 X improvement over LIGO I diodes (assuming Faraday isolator)


	PD power transients (conceptual)
	Electrical & signal requirements (RF)
	• RF frequency fRF Å 100 MHz (for likely schemes)
	• SNR (i.e., ‘shot:electronic noise ratio’)
	-
	- damage -> lower IDC
	- SNR -> raise IDC
	- e.g., 1.2 W, 1 nV/ÃHz, N=10 diodes =>
	- EGG G30642G, 100 MHz: (OK @29 MHZ, NG@ 100 MHz)


	Electrical & signal (DC readout)
	•

	Photodetector backscattering
	LIGO II Photodetectors: Status & Plan
	• Requirements definition & simulation
	- First-cut Requirements draft circulated for discussion at LSC 3/00
	- additional Melody & FFT simulations required to bound steady-state power
	- additional E2E simulations required to bound transient power
	- selection of modulation/readout configuration will determine frequencies

	• Device fabrication
	- High power custom RF devices now being fabricated by D. Jackrel at Stanford

	• Testing
	- MIT PD test rigs upgraded to f > 125 MHz, P > 0.5 W /diode, B < 10-6 sr-


	Likely PD Specs for LIGO II Power and Sensitivity
	Steady-state power
	0.6 W
	3 W ?
	Transient damage
	3 J / 10 ms
	100 J / 10 ms ?
	Signal/Noise
	1.4 x 1010 Hz1/2
	3.1 x 1010 Hz1/2
	Quantum efficiency
	80%
	90%
	Spatial uniformity
	1% RMS
	0.1% RMS ?
	Surface backscatter
	10-4 /sr
	10-6 /sr

	Photon Actuator Milestones
	• 2Q’02: Initial demonstrator system commissioned
	× Single stage AM stabilization
	× Steerable White cell geometry & dynamics (small-scale)
	× Modeling completed for primary design requirements

	• 2Q’03: Preliminary test results
	× Design iteration: dynamic range, power, bounce number, agility
	× Control specification

	• 2Q’04: Final test results on iterated design
	× Sufficient to complete final design


	LIGO I RF Photodetectors
	Linearizing RF response through feedforward IDC bias compensation
	ISC digital signal processing
	Photon Recoil Drive for Test Masses
	• Problem: eliminating attachments to test masses (magnets etc.) in LIGO II may leave insufficien...
	• Pure actuation from upper stages ( a la “marionette”) may not offer sufficient bandwidth (TBD)
	• Electrostatic actuators promising, but noise susceptibilities are hard to exclude conclusively ...
	• Photon recoil drive offers relatively simple non-contact drive alternative with well-defined li...

	Photon recoil drive dynamic range
	• Dynamic range follows from power available:
	• Noise due to intensity fluctuations constrained by sensitivity goal, e.g.
	• Taking “reasonable” RIN (e.g., shot noise in 100 mW sample ) gives maximum power and thus dynam...

	Multibounce beam delivery
	Low-RIN photon drive laser system
	• Cascaded intensity stabilization stages
	• Spatial filters, int. spheres to insure “true” RIN cancellation

	Photon drive issues & concerns
	• How much peak force is actually required?
	× Depends on detailed apportionment of corrective signals between upper and intermediate stages
	× Depends on detailed “crossover” behavior and stability criteria
	× Also depends on narrowband features with high RMS (stack/suspension eigenmodes, internal mirror...

	• Can low enough intensity noise be achieved?
	× Probably, main IFO laser is more demanding
	× Question of technical trades, cost & complexity
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