Status of LIGO

Mark Barton

Aspen Winter Conference on Gravitational Waves and Their Detection

LIGO I

interferometer

Initial LIGO Interferometer Configuration

LIGO I

the noise floor

- Interferometry is limited by three fundamental noise sources
 - <u>seismic noise</u> at the lowest frequencies
 <u>thermal noise</u> at intermediate frequencies
 <u>shot noise</u> at high frequencies

 Many other noise sources lurk underneath and must be controlled as the instrument is improved

LIGO Sites

LIGO Plans

schedule

1 996	Construction Underway (mostly civil)
1997	Facility Construction (vacuum system)
1998	Interferometer Construction (complete facilities)
1999	Construction Complete (interferometers in vacuum)
2000	Detector Installation (commissioning subsystems)
2001	Commission Interferometers (first coincidences)
2002	Sensitivity studies (initiate LIGOI Science Run)
2003+	LIGO I data run (one year integrated data at h ~ 10 ⁻²¹)

2005 Begin LIGO II installation

Interferometers international network

LIGO (Washington)

LIGO (Louisiana)

LIGO-G000193-00-M

Construction Project status

- 98% complete
- construction project will finish on the budget & schedule

Hanford buildings complete

- » last laboratory building
 - contract A&E design
- Livingston complete
 - » last laboratory building
 - contracting construction

LIGO Facilities

Beam Tube Enclosure

- reinforced concrete
- no services

Beam Tube Bakeout

LIGO

vacuum equipment

Vacuum Chambers

Vibration Isolation Systems

- » Reduce in-band seismic motion by 4 6 orders of magnitude
- » Compensate for microseism at 0.15 Hz by a factor of ten
- » Compensate (partially) for Earth tides

LIGO-G000306-00-M

Seismic Isolation Systems

Support Tube Installation

Installation

Seismic Isolation

constrained layer damped springs

Seismic Isolation

LIGO

Laser

- Nd:YAG
- **1.064** μm
- Output power > 8W in TEM00 mode

Improvements in Laser Performance

- Laser stability an important contributor to LIGO sensitivity
- Steady improvement in laser noise performance
 - » electronics
 - » acoustics
 - » vibrations

LIGO "First Lock"

Optics

mirrors, coating and polishing

- All optics polished & coated
 - » Microroughness within spec. (<10 ppm scatter)</p>
 - » Radius of curvature within spec. $(\delta R/R < 5\%)$
 - Coating defects within spec. (pt. defects < 2 ppm, 10 optics tested)
 - Coating absorption within spec. (<1 ppm, 40 optics tested)

Suspensions

LIGO-G010043-00-M

Full Interferometer Locking

+ Still a bit tenuous......

LIGO PAC Meeting

Hanford Commissioning Time Line Configurations and Lock Periods

- 11/99 Beam down 2 km arm (Y)
- 12/9/99 0.2 s lock of Y arm cavity
- 1/14/00 2 s lock of Y arm
- 1/19/00 60 s lock of Y arm
- 1/21/00 5 min lock of Y arm
- 2/12/00 18 min lock of <u>X</u> arm
- 3/4/00 90 min lock of X arm
- 3/26/00 10 hr lock of X arm
- vent for installation
- 7/00 lock of power-recycled Michelson
- 8/00 lock of PRM + one arm
- 10/00 2 min full lock
- 11/00 "E2" engineering run (1 arm only)
- 1/01 40 min full lock

Lock Sequence

- Well-defined series of stages:
 - Phase I No resonance
 - Phase II Sidebands resonant in PRM
 - Phase III Sidebands resonant in PRM, carrier resonant in one arm
 - Phase IV Sidebands resonant in PRM, carrier resonant in both arms
- Progress from stage to stage automated
- Software recognises state of IFO based on estimators
- Adjusts control parameters to move from state to state
- Estimators derived from E2E modelling, improved with experience

Control Issues

- Key to full lock is managing sign change of determinant of control matrix
 - recognise approaching zero using estimators from modelling
 - disable selected servos temporarily, reenable with reversed sign

Pitch/Yaw Problem

- ≈0.5-1 Hz oscillations in cavity power due to poor alignment control
- Interference problem with shadow sensors for local control
 - shadow sensors use IR LED/PD
 - great when IFO beam was to be green (Argon) now a problem
 - redesign with different LED/PD and modulation for LHO 4k, retrofit to 2k, LLO
 - in the meantime, use very low gain
- Global alignment control only just being implemented
 - wavefront sensors recently added
 - improves locking time from seconds to many minutes

New OSEMs

- New LED/PD
- Still IR but clear of 1064 nm
- Smoother coating (ZrN)
- Better PAM screw
- Better wire routing
- Simpler body design
- New modulated electronics
- Install in Hanford 4km, retrofit to 2 km and Livingston

Tidal Limit

- Earth tides stretch the interferometer arms
 - Common mode effect to be cancelled by feedback to laser frequency
 - Differential effect to be cancelled by fine-actuation system
 - Neither yet implemented
- The only tidal compensation is currently the local control system
- limited range
- sets a natural limit of 10-40 min on lock stretches
- locking is robust within those periods

Installation/Commissioning Overview

- Hanford 2k
 - "Installation" more or less complete: vacuum, seismic, laser, in-vacuum hardware (mode cleaner, core optics, baffles, beamdumps etc), external optics, some LSC and ASC electronics
 - advanced commissioning: stable if noisy locks of the whole IFO!
- Livingston (4k)
- Substantial progress: vacuum, seismic, laser, all in-vacuum hardware, lots of other stuff
- Commissioning proceeding apace: 10 s locks of a 4 km cavity
- Hanford 4k
- Installation held up to allow inclusion of redesigned OSEM
- In-vacuum hardware being installed.

Data Runs

- 11/00: E2 engineering run
 - Hanford 2km IFO in single arm mode
 - Practice at round-the-clock operation
 - Wide variety of characterization tasks
- 3/01: E3 engineering run
- Hanford 2 km, full IFO with recycling
- Livingston 4 km, probably one arm
- Later in 2001
- First proper coincidence runs
- 2002, 2003+
- LIGO I Science Run, LIGO I Data Run

