

Global Diagnostics System

NSF Review, February 26, 2001

Daniel Sigg, LIGO Hanford Observatory

John Zweizig, LIGO Caltech

Diagnostics Tasks

- Detector Characterization
 - Calibration
 - Detector response, inter-system dependencies & cross-couplings
 - Machine artifacts
- Maintain Performance
 - System identification (Feedback control)
 - Continuous operation monitoring
- Detection Confidence
 - Understand the physical environment
 - Understand the auxiliary degrees-of-freedom
- ⇒ GW signal : 1% of data rate (3MB/s/ifo)

Basic Approach

- Consists of two sub-systems (tools)
 - ☐ Diagnostic test tool (DTT)
 - > Optional direct excitation, injecting calibration signals
 - > Standard analysis tools (psd, coherence, transfer function)
 - Data received directly from DAQ system
 - ➤ Graphical Interface
 - Data Monitoring tool (DMT)
 - > Passive monitoring
 - ➤ Online access to all IFO+PEM data
 - > Supports complex algorithms
 - Interactive use (via root) or background running

Online Data Access

- GDS frames built by dedicated frame broadcaster.
- Data broadcast over G-bit Ethernet to DMT hosts.

5

Setup

Plot

Frequency Noise Measurement

Power spectrum estimate: Frequency Noise

Alignment Fluctuations

Auto-Alignment: Step Response

Data Monitor Tool

- Detect and tag known signals and disturbances
 - Find and record transients
 - Correlate external effects to operational parameters
- Measure and summarize the running state
 - Noise spectra, average power, other operational parameters
 - Rate and magnitude of known transient signals
- Notify operators of faults or abnormal conditions
 - Increases in all or part of noise spectrum
 - Other device specific problems
- Support interactive testing and diagnosis

Online Process Model

- Current data distributed via shared memory in each host.
- Any number of monitors access current data independently
- Trigger Manager routes triggers to operators/meta-Database.
- Monitors serve data for Status Reports & Displays.

6

Monitor Software Structure

- Skeleton (Base class)
 - Provides all house-keeping functions for monitor program
 - Fills time series with specfied amount and type of data
 - Calls monitor processing funtion when requested data is available
- Monitor implemented as C⁺⁺ class
- C⁺⁺ Class Library
 - Input data (frames)
 - Output data (triggers, trends, html, frames)
 - Data containers (Time series, Spectra, Wavelet)
 - Signal processing (FIR & IIR filters, decimation, Line removal)
- Interactive operation with ROOT
 - All library classes available from ROOT
 - Macros for plotting LIGO data

Monitor Output Data Types

- Triggers (meta-Database records)
 - Document time & magnitude of transients / state changes.
 - Guide data analysis.
- Trend Frames
 - Contain averages, RMS & extrema vs. time.
 - Record long-term trends of channels or derived signals.
- Designer frames
- Status reports
 - Text or HTML.
 - Easy to implement; Useful but ugly.
- Monitor Data Displays
 - Data objects (time series, Spectra etc.) served by monitor
 - Monitor Display Manager displays selected objects.

Conclusions

Combination of

- High performance data acquisition system
- > 24 hour disk cache
- New software and analysis tools

has enabled

- > Fast learning curve
- Emphasis on analysis rather than data gathering
- Greatly enhanced remote diagnostics