ADVANCED LIGO PRESTABILIZED LASER REQUIREMENTS

Peter Fritschel
LSC Meeting, 15 March 2001

OUTPUT POWER

- ☐ 120 W required at interferometer input (PRM)
 - 180 W from PSL (66% efficiency through input optics)
 - too pessimistic on efficiency?
 - Non-TEM00 content (static): mode cleaner sensing
 - not critical; MC needs at most 1W effective input power for shot noise sensitivity
 - higher order mode power: < 10 W

Power control

- Static: better to do control in input optics, just before mode cleaner
- Dynamic: power control input for stabilization and modulation
 - ➤ DC 100 kHz (3 dB point; excepting any laser physics dynamics)
 - Range: sufficient to correct power fluctuations in 1Hz-100 kHz band, but no less than ~ +/- 1% of output power

POWER STABILITY

- Long term
 - better than 1% over any 24 hr period
- ☐ Control band, f < 10 Hz
 - better than 1% rms
- ☐ GW band, f > 10 Hz
 - ultimate noise requirement determined by
 - unbalanced radiation pressure at low frequency
 - readout scheme (DC vs RF) and defects/deviations at high frequencies
 - final stabilization done by detecting a sample of the mode cleaner transmission (in-vacuum photodetector), and feeding back to the PSL power control input
 - modest level of power stability required of PSL to ease gain required in final loop

POWER STABILITY

TECHNICAL POWER NOISE AT THE MODULATION FREQUENCY

- Critical if RF heterodyne readout is used
 - $f_{mod} = 10-30 \text{ MHz}$
 - technical AM should be 1/10 of shot noise in the total power of the detected beam → much easier than LIGO I, due to addition of output mode cleaner (>1000x rejection of higher order mode light)
 - expect < few mW of TEM00 + residual higher-order carrier light</p>
 - total detected power: < few 10s of mW</p>
 - technical AM: less than 1/10 of shot noise in 30 mW
- Detection of auxiliary beams
 - pick-off beam power: ~100 mW
 - technical noise should be less than 1/2 of shot noise in a 100mW beam (slightly less stringent than above)

FREQUENCY NOISE

PSL FREQUENCY CONTROL INPUTS

- □ Wideband input
 - Frequency response: speed to allow 100kHz BW loop
 - amplitude response flat to within 2 dB up to 100 kHz
 - phase lag less than 20 deg at 100 kHz
 - Control range:
 - DC 1 Hz: 1 MHz pk-pk (to account for ground motion below 1 Hz)
 - ➤ 1 10 Hz: may roll off (for noise filtering); need only ~1 kHz range
- ☐ Tidal correction input
 - 50 MHz pk-pk
 - corresponds to 670 microns common mode arm length change
 - Speed: step response time constant less than ~30 min

MISCELLANEOUS PSL REQS

- ☐ Beam jitter TBD (listen to Guido's talk)
 - any active stabilization handled by input optics
- □ Availability
 - operate continuously for at least ~1 week
- □ Scattered light
 - dump beams down to 1 mW (?); control diffuse scattered light
- □ Diagnostics