GLOBAL CONTROL ISSUES FOR ADVANCED LIGO QUAD SUSPENSIONS

Peter Fritschel

LSC Meeting, 16 March 2001

POINTS OF DISCUSSION

□ Longitudinal control – arm differential mode

- follow up on K Strain's original global control example, incorporating expected active seismic isolation (from SEI)
- new information about instability of the optical plan (Buonanno & Chen); minimum bandwidth for this channel
- Considerations for angular control

Noise implications

- actuator driver electronics noise
- actuator coupling to environmental electromagnetic noise

CONTROL ALLOCATION CONSIDERATIONS

□ Signal/noise ratio at each stage: F_{max}/F_{noise}

 maximum force determined by the input fluctuations (seismic, quantum, etc) and the frequency band over which each stage has dominant control

 noise determined by electronics noise in actuator driver, or a noise property of the actuator itself

□ Overall servo bandwidth (differential mode)

- gain required at ~100 Hz to stabilize optical dynamics
- residual rms not really a driver

• BW constrained at high-f end by mechanical modes (suspension fiber violin resonances, test mass modes)

LONGITUDINAL CONTROL

G010086-00-D

EM ACTUATORS: B-FIELD COUPLING

□ Magnetic field fluctuations limit magnet size

• Environmental B-field fluctuations (fields produced by ifo equipment must also be considered):

$$B(f) \sim 10^{-11} \left(\frac{10 \text{ Hz}}{f}\right) \text{T}/\sqrt{\text{Hz}}$$

- Force on 'magnetized' mass: $F \sim \mu B \epsilon / l \sim \mu B$
- Feedthru to test mass (current quad susp model): $x_{TM}(10) = F_2 \cdot 2 \times 10^{-8}$ (penultimate mass)

$$= F_1 \cdot 5 \times 10^{-10}$$
 (upper control mass)

• x_{TM} required to be < 10⁻²⁰ m/rtHz at 10 Hz

➤ B-field coupling falls off as 1/f⁵ or faster

EM ACTUATORS: MAX STRENGTH

- Max magnetic moment from B-field coupling, divide by factor of 10 for additional margin?
 - 0.05 A-m², penultimate mass (x0.1 ?)
 - 2 A-m², upper control mass (x0.1 ?)
 - LIGO I magnets: 0.007 A-m²

Coils

- assume LIGO I style coils, ~2.5 cm OD, 400 turns
- F = 2.2 N/A x (μ /1 A-m²)
- maximum current, ~ 0.1 A

□ F_{max}

- 1 mN for penultimate mass (μ =0.005 A-m²)
- 40 mN for upper control max (μ =0.2 A-m²)

PITCH & YAW BIAS RANGE

□ Types of misalignment

• Initial alignment errors (surveying errors, adjustment resolution)

 \blacktriangleright LIGO experience: ~ 20 cm error over 4 km \rightarrow 25 μ radian

- \bullet Long term drift: little experience, less than 10 $\mu radian$ over a week or more
- Dynamic fluctuations: less than 0.1 μradian (guess)
- □ Require ±0.25 mrad of pitch & yaw bias range
- Applied at stage 1 (upper control mass) of quad suspension
 - must apply pitch bias here; might as well do yaw also
 - force required: 50 mN

compare to 1 mN required for longitudinal control

SUMMARY OF FORCE & NOISE REQ. FOR EACH STAGE

Stage	Pitch & Yaw bias	Long. lock	Actuator Noise, N/Hz ^{1/2}	Dynamic Range (Hz ^{1/2})	Max force
upper control mass	50 mN	1 mN	2x10 ⁻¹¹	5x10 ⁷	40 mN
penultimate mass		0.1 mN	5x10 ⁻¹³	2x10 ⁸	1 mN
test mass		0.1 nN	2.5x10 ⁻¹⁵	4x10 ⁴	

- Comparison dynamic range examples:
 - ► LIGO I ADC/DAC: ~10⁶ √Hz
 - \rightarrow LIGO I suspension controller: ~5 x 10⁹ \sqrt{Hz}

➤ low-noise op-amp: ~10¹⁰ √Hz

PHOTON ACTUATION ON TEST MASS

 $\Box F_{max} = 10x F_{rms} = 10^{-10} N$

• $F_{max} = P/c \rightarrow P_{min} = 30 \text{ mW}$

• Go for P = 1 W (still small laser; no multiple bouncing needed)

- \Box F_{noise} < 2.5 x 10⁻¹⁵ N/rtHz
 - $\frac{\delta P}{P} < 2 \times 10^{-7} / \sqrt{\text{Hz}}$, shot noise in a 50 μ W beam

To DO

□ Include unstable optical resonance

Include wire resonances

- crossover between penultimate and test mass actuations
- important for test mass actuation as well
- Virginio S making a model with MSE
- □ Auxiliary degrees-of-freedom
 - required bandwidth probably only ~1 Hz
 - don't need actuation on test mass; maybe not even on penultimate mass ?
- Lock acqusition