Thermal Noise Effects of Optical Coatings

Gregory Harry LIGO - MIT LSC Meeting 8 Suspensions Working Group March 2001

Syracuse Q Measurements 1

• Commercially polished slides, REO 3% transmittance, 14 layer SiO₂/Ta₂O₅ coating, 2.4 μ m thick

× Slide 1: $Q_{uncoat} = 4.0 \ 10^6$, $Q_{coated} = 1.1 \ 10^5$

× Slide 2: $Q_{uncoat} = 4.9 \ 10^{6}$, $Q_{coated} = 1.6 \ 10^{5}$

- Superpolished disk, REO 1 ppm transmitance, 38 layer SiO_2/Ta_2O_5 coating, 24 μm thick

 $\times Q_{\text{uncoated}} = 3.48 \ 10, \ Q_{\text{coated}} = 1.28 \ 10^6$

Syracuse Q Measurements 2

$$\phi_{coat} = \frac{V}{S} \frac{1}{\mu \cdot d} \left(\frac{1}{Q_{coated}} - \frac{1}{Q_{uncoated}} \right)$$

•
$$\mu_{slide} = 3, \, \mu_{disk} = 1.2$$

- Slide 1: $\phi_{\text{coating}} = 6.1 \ 10^{-4}$
- Slide 2: $\phi_{\text{coating}} = 4.2 \ 10^{-4}$
- Slide 3: $\phi_{\text{coating}} = 4.3 \ 10^{-4}$
- Disk 1: $\phi_{\text{coating}} = 3.2 \ 10^{-4}$

Thermal Noise Modeling

$$S_{th}(\omega) = \frac{2kT(1-\sigma^2)}{\omega Y_{sub}w\sqrt{\pi}} \phi_{readout}$$

$$\phi_{readout} = \phi_{bulk} + \frac{1}{\sqrt{\pi}} \frac{(1 - \sigma_{sub})}{(1 - 2\sigma_{sub})} \frac{d}{w} \left(\frac{Y_{coat}}{Y_{sub}} \cdot \phi_{coat||} + \frac{Y_{sub}}{Y_{coat}} \cdot \phi_{coat\perp} \right)$$

- w is 1/e width of beam, need to make large
- $\phi_{coat||}$ is being measured, 4 10⁻⁴
- \$\phi_{coat+}\$ needs to be measured, can't be done with resonant Q, ellipsometry being explored at Syracuse

Effects on LIGO Thermal Noise 1

Assumptions

- × 6 cm beam radius
- × Equal values for $\phi_{coat||}$ and ϕ_{coat+}
- × 38 layer coating, 1 ppm transmittance
- × Silica substrate with $Q_{bulk} = 30 \ 10^6$
- Effective readout $Q = 9 \ 10^6$

Effects on LIGO Thermal Noise 2

• BNS Inspiral Range from Bench $xQ = 30 \ 10^{6}$, range = 156 Mpc $xQ = 9 \ 10^{6}$, range = 104 Mpc

Questions and Experiments

- Is the loss from rubbing between coating and substrate?
 × Coat with single layers and measure Q
- Is the loss from rubbing between coating layers?
 × Coat with 14 and 38 layers, measure Q
- Is the loss from the intrinsic φ of the coating material?
 × Coat with 14 and 38 layers for 0.5 μm, measure Q
 × Coat with other materials, Hf/AI and/or AI₂O₃

Further Experiments

- Ellipsometry experiment to measure perpendicular component of coating loss
- Anneal samples at different temperature
- Measure Q's at different temperatures
- Change surface preparation of substrate
 - × Chemical treatments
 - × Ion polishing
 - × Heat polishing
- Compare Q's from coatings from different vendors

Further Modeling

- Include different Young's moduli and Poisson ratios (preliminary version from N Nakagawa)
- Include finite size of mirrors
- Include effects from coatings on back of beamsplitters and input mirrors
- Optimize mirror size and/or shape to minimize thermal noise
- FEA modeling to include effects of silicate bonding

