

Thermal Headaches in Advanced LIGO Input Optics

Guido Mueller, Rupal Amin, David Guagliardo, David Tanner, and David Reitze

Physics Department University of Florida Gainesville, FL

Input Optics Functions

•<u>RF Modulation</u>
•Mode Cleaning
•Mode Matching
•<u>Optical Isolation</u>
•Distribution of Control Beams
•Self Diagnostics

Parameter	LIGO I	Advanced LIGO
Laser Power	8.5 W	180 W (150 W)
Overall IO	750/	660/2
Efficiency (TEM ₀₀)	1370	00 /0
Optical Isolation	70 dB	(> 85 dB)

The Challenge

Advanced LIGO will operate at 180W CW powers - "presents some challenges":

•Thermal Lensing --> Modal Degradation

$$\zeta = \alpha L \frac{\mathrm{dn}}{\mathrm{dT}} P / 2 K \lambda \qquad z = 1 + i \zeta$$
$$\overset{\Box}{\widetilde{E}} = M (\zeta, z) \bullet \overset{\Box}{E}$$

- •Thermally induced birefringence
 - -FI- loss of isolation
 - -EOM spurious amplitude modulation

•Damage

•Other (nonlinear) effects (SHG, PR)

LiNbO₃ at 30W:

5 x 5 x 40 mm LiNbO₃ EOM - thermal lensing is: i) severe ii) position dependent

Characterization of thermal lensing

Optical Path Difference Measurements

P=50 W Absolute ΔL (hot - cold): 10 µm ΔOPD (1/e intensity): ~ 100 nm \longrightarrow 250 nm @ 125W

Optical Path Difference Measurements

 $c_{x}(\psi_{aberrated},\psi_{m}) = \int_{-\infty}^{+\infty} \psi_{m}(x) \cdot \psi_{aberrated}^{*}(x) dx$

Mansell, et al., Appl. Opt., 2001

$$\boldsymbol{\kappa} = \left[c_x(\boldsymbol{\psi}_{aberrated}, \boldsymbol{\psi}_m) \cdot c_x^*(\boldsymbol{\psi}_{aberrated}, \boldsymbol{\psi}_m) \right] \cdot \left[c_y(\boldsymbol{\psi}_{aberrated}, \boldsymbol{\psi}_n) \cdot c_y^*(\boldsymbol{\psi}_{aberrated}, \boldsymbol{\psi}_n) \right] = \boldsymbol{\kappa}_x \cdot \boldsymbol{\kappa}_y$$

Propagation Measurements I

Propagation Measurements II

Thermal Lensing in LiNbO₃

•KTP does work; 300 W CW power, 1064 nm (H. Injeyan, TRW); RTA should also work (lower loss tangent)

E-O Modulation in Advanced LIGO

<u>Alternative Method:</u> Mach-Zehnder modulation --> architecture problem

Prototype developed for initial LIGO detectors, but not well characterized >> R&D effort

Power Independent Compensation of Thermal Lensing

11

Thermal Lensing Compensation

 Parameter
 TGG
 FK51

 α (m⁻¹)
 2 x 10⁻¹
 1 x 10⁻¹

 K (W/m K)
 7.4
 0.9

 dn/dT (C⁻¹)
 + 2 x 10⁻⁵
 -6 x 10⁻⁶

 Length (mm)
 20
 15.9

Modeled using Melody

Thermal Lensing Telescope

Similar to current LIGO Telescope

- 2 mirror design (vacuum envelope constraints)
- Accommodates wide range of mode matching parameters
- All large (20 cm) optics

R&D Issues Still to be Faced

- Modulator Development:
 - RTA performance
 - MZ modulation
- Isolator Development:
 - Full FI system test (TCFI, EOT)
 - Possible thermal compensation (-dn/dT materials)
- Telescope Development:
 - in-situ mode matching adjustment