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FEA model: uncorrecte
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Adaptive Compensation
Lensing in LIGO II Co

¥ Thermal lensing forces polished-in curvatu
core optics for cavity stability at operating 

¥ LIGO II will have ~20X greater laser powe
figure requirements

- higher order (nonspherical) distortions significant; p
refocusing not adequate to recover performance

- possible bootstrap problem on cold start

¥ Test mass & coating material changes ma
- SiO2 has low kth, high dn/dT, but low bulk absorption

- Al2O3 has higher kth, moderate dn/dT, but  high bulk

- coating improvements still speculative
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noise is a concern
LIGO-G010147-00-R Zucker

Sensing & Actua

¥ Extend LIGO I “WFS” to spatially resolve p
- scanning “Phase Camera” (Adhikari, MIT)

- staring “Bullseye WFS” (Mueller, UF)

¥ Thermal actuation on core optics (Lawrence,

- Noncontact actuator with minimal spurious phase n

- Time constants matched to disturbance timescales

¥ Two actuators in development
- Passive radiative ring heater and low-emissivity shie

Ð Only copes w/axisymmetric errors, but minimal potenti

- Scanned directed beam

Ð Arbitrary spatial correction, but induced thermoelastic 
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FEA model w/correction: 
cylindrical radiation

  Nichrome Ring Heater
          r=6.5 cm

f=100cm
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ATC Experime

VACUUM (10^-6 mBar)

Test Optic
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ATC Experime
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OPD vs. t, ring  heater w/S
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Directed Beam Comp
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(neat sideshow: accurate
sapphire material pro
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s so far 

 

(preliminary)

        

/dT (sense beam 

 (33.1± 2.5)  Wm-1K-1 but 

b: α ∼ 5.5 x 10-6 K-1)

ss, and many inclusions)

n/dT (rework SH optics)
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Interesting sapphire result

◊ Due to test geometry α  and  kth degenerate with dn
transmitted through bulk)

◊ Taking dn/dT = 10-5 K-1 gives ÒacceptedÓ value kth =

comparatively low α = (3.65±0.55) x 10-6 K-1 (test la

◊ Sample may be peculiar (large Þssure, internal stre

◊ More tests:

Ð Several other sapphire samples on the way

Ð Measure face distortion w/o transmission to sidestep d
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Current ATC W

¥ FEA model of spatial Òimpulse responseÓ f

◊ Senior thesis of R. Bennett

◊ Showed edge effects unimportant over reqÕd actuat
generic inßuence kernel to each corrector location g

¥ Developing ÔoptimizedÕ correction algorithm

◊ Best patch size as function of highest-order ÔsigniÞc

◊ Scan pattern for minimum power to correct a given

¥ Interferometer modeling

◊ RCL now learning MELODY, R. Beausoleil to visit M

◊ Build rigorous Ògoodness/badnessÓ Þgure of merit t
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 thermoelastic ÒpingingÓ 
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Correction Kernel F

¥ In steady state, corrector beam size doesn
spatial frequency much

◊ conÞned Gaussian heat distribution is transient, quic
cone; spatial phase gradient (i.e., ÒcontrastÓ) depen

◊ (fortunately, this also applies to heat generated by s

◊ Power required starts to take off rapidly above orde

¥ ÒSpiralÓ scan pattern basis looks most efÞc

◊ Radial and azimuthal zone decomposition (looks m

◊ Minimal acceleration for scanner; also expect lower
than raster
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Spot Size: δ Function
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Thermal Compensatio

¥ Total heat deposited & net temperature ris
◊ ÒEfÞcientÓ compensation will ~ double net ∆T w.r.t. a

◊ 30K total rise plausible, would increase kT noise 5%

¥ Noise
◊ Thermoelastic response to varying beam intensity/p

◊ Developing time-dependent thermal FEA to model 

¥ Absorption spatial inhomogeneity
◊ Determines pixellation, complexity/depth of compen

¥ Net efficacy & trade with optics/material im
◊ Depends on sensitivity of IFO sensing to Þgure erro
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Near term

¥ Now running with computer-controlled gal

◊ Evaluating performance & efÞciency on some toy p
readoutÕs spherical aberration, make speciÞc Zernik

◊ verify FEA predictions on inßuence kernel near edg
frequency optimizations

◊ Phil Marfuta senior thesis

¥ Second round of sapphire material tests (A

¥ Thermoelastic noise model (feed E2E mo

¥ Possible test in small IFO (TBD based on 

◊ Near-unstable FP cavity?

◊ Integration with RF phase map readout
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Big picture

¥ 2QÕ01: Proof-of-concept experiment & IFO

◊ Improved requirements deÞnition

◊ Performance Þgure of merit vs. COC losses, power

◊ Enables conceptual design for Advanced LIGO

¥ 3QÕ02: Full scale radiative compensator d

◊ Engineering prototype at full mechanical scale (time

◊ Also demo main parts of wavefront error sensing te

¥ 4QÕ04: Full scale directed beam actuation
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