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GO Adaptive Compensation of Thermal
Lensing in LIGO Il Core Optics

* Thermal lensing forces polished-in curvature bias on LIGO |
core optics for cavity stability at operating temperature

* LIGO Il will have ~20X greater laser power, ~3X tighter net
figure requirements

- higher order (nonspherical) distortions significant; prepolished bias, dynamic
refocusing not adequate to recover performance

- possible bootstrap problem on cold start

« Test mass & coating material changes may not be adequate
- SiO, has low ki, high dn/dT, but low bulk absorption
- Al,O3 has higher k;,, moderate dn/dT, but high bulk absorption (so far...)

- coating improvements still speculative

LIGO-G010147-00-R Zucker 4



Sensing & Actuation

« Extend LIGO | “WFS” to spatially resolve phase/OPD errors
- scanning “Phase Camera” (Adhikari, MIT)
- staring “Bullseye WFS” (Mueller, UF)
* Thermal actuation on core optics (Lawrence, MIT)
- Noncontact actuator with minimal spurious phase noise
- Time constants matched to disturbance timescales
« Two actuators in development
- Passive radiative ring heater and low-emissivity shields
— Only copes w/axisymmetric errors, but minimal potential for spurious noise
- Scanned directed beam

— Arbitrary spatial correction, but induced thermoelastic noise is a concern
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Thermal OPD Actuators
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6o FEA model wicorrection: ring heater +
cylindrical radiation shield
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ATC Experiment
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O OPD vs. t, ring heater w/SIO2 test optic
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sapphire material properties)

Measure waist, power; fit thermal OPD vs. time by adjusting o/ky,, (dn/dT)/kipn, Kin/Cy

SiOy,: Al,O3(c-axis):
dn/dT= (8.9 + 0.1) x 10° K! al= (3.65 + 0.55) x 10° k1
ke, = (1.25 £ 0.07) W mL K1 k* = (33.1 £ 2.5) Wmt K?
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* Depends strongly on assumed dn/dT
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IGO Interesting sapphire results So far greimay

O Due to test geometry a and ki, degenerate with dn/dT (sense beam
transmitted through bulk)

O Taking dn/dT = 107° K gives “accepted” value ky, = (33.1+ 2.5) Wm K" but
comparatively low a = (3.65+0.55) x 10® K1 (test lab: a 05.5 x 10° K1)
O Sample may be peculiar (large fissure, internal stress, and many inclusions)
O More tests:
— Several other sapphire samples on the way

— Measure face distortion w/o transmission to sidestep dn/dT (rework SH optics)
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Current ATC Work

 FEA model of spatial “impulse response” for heating beam
O Senior thesis of R. Bennett

O Showed edge effects unimportant over req’d actuation area; translation of
generic influence kernel to each corrector location gives negligible errors

» Developing ‘optimized’ correction algorithm
Q Best patch size as function of highest-order ‘significant’ Zernike aberration
O Scan pattern for minimum power to correct a given aberration

* Interferometer modeling
¢ RCL now learning MELODY, R. Beausoleil to visit MIT in May

O Build rigorous “goodness/badness” figure of merit to measure performance
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Correction Kernel Findings

* |n steady state, corrector beam size doesn’t drive maximum
spatial frequency much

O confined Gaussian heat distribution is transient, quickly relaxes to an inverted
cone; spatial phase gradient (i.e., “contrast”) depends mostly on pump power

O (fortunately, this also applies to heat generated by small or pointlike losses!)
O Power required starts to take off rapidly above order (I + m) > 20 or so

« “Spiral” scan pattern basis looks most efficient
¢ Radial and azimuthal zone decomposition (looks much like Zernike basis)

¢ Minimal acceleration for scanner; also expect lower thermoelastic “pinging”
than raster
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Power vs. Zernike Order

Zernike Number
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Spot Size: o Function vs.
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AGO Thermal Compensation: Issues

 Total heat deposited & net temperature rise
O “Efficient” compensation will ~ double net AT w.r.t. ambient

Q 30K total rise plausible, would increase kT noise 5%
* Noise
O Thermoelastic response to varying beam intensity/position (for sapphire)
O Developing time-dependent thermal FEA to model better
« Absorption spatial inhomogeneity
O Determines pixellation, complexity/depth of compensation required
* Net efficacy & trade with optics/material improvements

O Depends on sensitivity of IFO sensing to figure errors & their spatial scales
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Near term

* Now running with computer-controlled galvo scanner

Q Evaluating performance & efficiency on some toy problems, e.g., fix SH
readout’s spherical aberration, make specific Zernikes & measure residuals

O verify FEA predictions on influence kernel near edges, power & spatial
frequency optimizations

O Phil Marfuta senior thesis
« Second round of sapphire material tests (April-dJune)
« Thermoelastic noise model (feed E2E model?)
 Possible test in small I[FO (TBD based on MELODY results)

O Near-unstable FP cavity?

O Integration with RF phase map readout
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Big picture

« 2Q’01: Proof-of-concept experiment & IFO model results
O Improved requirements definition
QO Performance figure of merit vs. COC losses, power, etc.
O Enables conceptual design for Advanced LIGO

« 3Q’02: Full scale radiative compensator demonstration
O Engineering prototype at full mechanical scale (time constants, etc.)

¢ Also demo main parts of wavefront error sensing technology

 4Q°04: Full scale directed beam actuation demonstration
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	• LIGO II will have ~20X greater laser power, ~3X tighter net figure requirements
	- higher order (nonspherical) distortions significant; prepolished bias, dynamic refocusing not a...
	- possible bootstrap problem on cold start

	• Test mass & coating material changes may not be adequate
	- SiO2 has low kth, high dn/dT, but low bulk absorption
	- Al2O3 has higher kth, moderate dn/dT, but high bulk absorption (so far...)
	- coating improvements still speculative


	Sensing & Actuation
	• Extend LIGO I “WFS” to spatially resolve phase/OPD errors
	- scanning “Phase Camera” (Adhikari, MIT)
	- staring “Bullseye WFS” (Mueller, UF)

	• Thermal actuation on core optics (Lawrence, MIT)
	- Noncontact actuator with minimal spurious phase noise
	- Time constants matched to disturbance timescales

	• Two actuators in development
	- Passive radiative ring heater and low-emissivity shields
	– Only copes w/axisymmetric errors, but minimal potential for spurious noise

	- Scanned directed beam
	– Arbitrary spatial correction, but induced thermoelastic noise is a concern



	Thermal OPD Actuators
	Implementation (SRM and ETM’s not shown)
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	ATC Experiment
	ATC Experiment
	OPD vs. t, ring heater w/SiO2 test optic
	Directed Beam Compensation
	(neat sideshow: accurate constraint of sapphire material properties)
	Interesting sapphire results so far (preliminary)
	× Due to test geometry a and kth degenerate with dn/dT (sense beam transmitted through bulk)
	× Taking dn/dT = 10-5 K-1 gives “accepted” value kth = (33.1± 2.5) Wm-1K-1 but comparatively low ...
	× Sample may be peculiar (large fissure, internal stress, and many inclusions)
	× More tests:
	– Several other sapphire samples on the way
	– Measure face distortion w/o transmission to sidestep dn/dT (rework SH optics)


	Current ATC Work
	• FEA model of spatial “impulse response” for heating beam
	× Senior thesis of R. Bennett
	× Showed edge effects unimportant over req’d actuation area; translation of generic influence ker...

	• Developing ‘optimized’ correction algorithm
	× Best patch size as function of highest-order ‘significant’ Zernike aberration
	× Scan pattern for minimum power to correct a given aberration

	• Interferometer modeling
	× RCL now learning MELODY, R. Beausoleil to visit MIT in May
	× Build rigorous “goodness/badness” figure of merit to measure performance


	Correction Kernel Findings
	• In steady state, corrector beam size doesn’t drive maximum spatial frequency much
	× confined Gaussian heat distribution is transient, quickly relaxes to an inverted cone; spatial ...
	× (fortunately, this also applies to heat generated by small or pointlike losses!)
	× Power required starts to take off rapidly above order (l + m) > 20 or so

	• “Spiral” scan pattern basis looks most efficient
	× Radial and azimuthal zone decomposition (looks much like Zernike basis)
	× Minimal acceleration for scanner; also expect lower thermoelastic “pinging” than raster


	Power vs. Zernike Order
	Spot Size: d Function vs. 1 cm
	Thermal Compensation: Issues
	• Total heat deposited & net temperature rise
	× “Efficient” compensation will ~ double net DT w.r.t. ambient
	× 30K total rise plausible, would increase kT noise 5%

	• Noise
	× Thermoelastic response to varying beam intensity/position (for sapphire)
	× Developing time-dependent thermal FEA to model better

	• Absorption spatial inhomogeneity
	× Determines pixellation, complexity/depth of compensation required

	• Net efficacy & trade with optics/material improvements
	× Depends on sensitivity of IFO sensing to figure errors & their spatial scales


	Near term
	• Now running with computer-controlled galvo scanner
	× Evaluating performance & efficiency on some toy problems, e.g., fix SH readout’s spherical aber...
	× verify FEA predictions on influence kernel near edges, power & spatial frequency optimizations
	× Phil Marfuta senior thesis

	• Second round of sapphire material tests (April-June)
	• Thermoelastic noise model (feed E2E model?)
	• Possible test in small IFO (TBD based on MELODY results)
	× Near-unstable FP cavity?
	× Integration with RF phase map readout


	Big picture
	• 2Q’01: Proof-of-concept experiment & IFO model results
	× Improved requirements definition
	× Performance figure of merit vs. COC losses, power, etc.
	× Enables conceptual design for Advanced LIGO

	• 3Q’02: Full scale radiative compensator demonstration
	× Engineering prototype at full mechanical scale (time constants, etc.)
	× Also demo main parts of wavefront error sensing technology

	• 4Q’04: Full scale directed beam actuation demonstration
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