Reducing Thermoelastic Noise by Reshaping the Light Beams and Test Masses

Research by ky, Sergey Strigin & Sergey Vyat

Vladimir Braginsky, Sergey Strigin & Sergey Vyatchanin [MSU]

Erika d'Ambrosio, Richard O'Shaughnessy & Kip Thorne [Caltech]

LIGO-G010151-00-R

Talk by Kip S. Thorne
LSC Meeting
Baton Rouge, LA, 16 March 2001

CONTEXT AND OVERVIEW

Thermoelastic Noise Contrasted with Conventional Thermal Noise

Conventional Thermal Noise [normal-mode random walk]

Light Beam

- mode frequencies: ~ 10,000 Hz
- random walk of amplitude & phase
 - -> noise in LIGO band,
 - ~10 to 1000 Hz
- Thermoelastic Noise [random heat flow; thermal expansion]
 - especially bad in sapphire because of high thermal conductivity
 Light Beam
 - on timescales 0.01sec
 fluctating hot & cold spots with size ~ 0.5 mm
 - beam averages over them; imperfect average

Computation of All Forms of Thermal Noise [Levin's "Direct Method"]

- To compute spectral density of noise at frequency f:
- Apply an oscillating force with frequency f and crosssectional profile same as light beam
- Compute total rate of dissipation (rate of entropy increase, i.e. of thermal heating), W_{diss}
- Spectral density of thermal noise ~ W_{diss}

- Classify noise sources by dissipation mechanism
- Conventional thermal noise: dissipation mechanism unknown; predicted spectrum not reliable
- Thermoelastic noise: dissipation due to heat flowing down Temperature gradiant; predicted spectrum reliable

Strategy to Reduce Thermoelastic Noise

- The larger the laser spot on the test masses, the better the averaging over ~0.5mm fluctuating bumps: amplitude noise ~1/r o^{3/2}
 - Step 1: keep Gaussian beam shape; enlarge beam radius r ³
- Gaussian beam averages over bumps much less effectively than a flat-topped beam.
 - Step 2: reshape the beam, making it as flat topped as is compatible with diffraction in LIGO's 4 km arms; Achieve this by (i) preparing light, before power recycling mirror, in new shape; (ii) reshaping arm-cavity mirrors so excited eigenmode has the flattened shape. Desired mirrors are dish shaped:
- Noise also depends on shape of test mass; gain modestly by
 - Step 3: reshape the test masses

The Quantitative Gains From Each Step

[Work in progress; numbers are tentative; modeling is far from complete]

- Present baseline design:
 - $r_0 = 6 \text{cm} (1/e \text{ in amplitude}; 1/e^2 \text{ in power})$
 - $h_{TE} = 1.45 h_{SQL}$
 - diffraction losses on each mirror:
 - 1ppm
 - Total losses: 4 x 1ppm x 830kW = 3.3W (vs. 125 W into IFO)
- Step 1: keep beam Gaussian; increase radius
 - $r_0 = 6.5 cm$
 - diffraction losses on each mirror increased to 10ppm
 - Total losses: 4 x 10ppm x 830kW = 33W (about 25% of the 125 W into IFO)
 - h_{TE} reduced by 0.88 from baseline, to 1.30 h_{SQL}
 - NS/NS observable distance increased from 300 to 320Mpc
 - Inspiral event rate increased by factor 1.2

The Quantitative Gains [continued]

[Work in progress; numbers are tentative; modeling is far from complete]

- Step 2: flatten beam; dish shaped mirror surfaces
 - choose beam radius such that the diffraction losses are held fixed at 10ppm on each mirror
 - h_{TE} reduced by factor 0.56 - net 0.88x0.56 from baseline,
 to 0.73 h_{SQL}
 - NS/NS detectable distance increased from 300Mpc (baseline) to 425Mpc
 - Inpiral rate increased by factor 2.9

The Quantitative Gains [continued]

[Work in progress; numbers are tentative; modeling is far from complete]

- Step 3: Reshape test masses
 - e.g., keep thickness fixed (13cm); increase radii from 15.7cm to 17.2 cm & 14.4 cm [input masses],
 20cm & 13 cm [end masses]
 - h_{TE} reduced by factor 0.8 - net 0.88x0.56x0.8 from baseline,
 to 0.59 h_{SQL}
 - NS/NS detectable distance increased from 300Mpc (baseline) to 450Mpc
 - Inpiral rate increased by factor 3.5 over baseline

Parasitic Modes in Arm Cavities

- We see no sign of problematic parasitic modes
 - not in end to end model
 - not in mode computations

ESTIMATED EFFECTS OF MIRROR TILT

[from d'Ambrosio's adaptation of end-to-end model]

[Work in progress; numbers are tentative; modeling is far from complete]

Increased Diffraction Losses:

~10ppm (0/10⁻⁸ rad)²

at each mirror

Laser

Veve-front Missmotch at Room Splitters

Wave-front Missmatch at Beam Splitter:

carrier power toward dark port:

IDP/Io = 1-Re <
$$\psi_1, \psi_2$$
 > $\phi \ 4(1-\text{Re} < \psi_{\text{notilt}}, \psi_{\text{tilt}}$ >) $\phi \ 10^{-4} \ (\theta/10^{-9} \ \text{rad})^2$

Conclusion

- By:
 - increasing the beam size (to diffraction losses of 10ppm),
 - reshaping the beam (by changing mirror face from spherical to dish-shaped)
 - reshaping the test masses (from cylinders to truncated cones)
- We can gain about a factor 3.5 in inspiral event rate [increase NS/NS range from 300 Mpc to 450 Mpc]
- The biggest gain (by a substantial amount) comes from the beam reshaping
- The practical problems in this proposal might be manageable.