A Comparison of Spherical Antennas with Interferometers Using Resonant Sideband Extraction

Gregory M Harry, Janet L Houser, and Kenneth A Strain

Aspen 2001

Overview of Presentation

- Review of previous work
- Spherical antennas
- Interferometers with resonant sideband extraction (RSE)
- Sources
- Signal-to-noise ratio calculations
- Conclusion

Comparison of Spheres with LIGO I

3! spheres (TIGAs) compared with LIGO I c. 1992

From G M Harry, T R Stevenson, H J Paik, Physical Review D 54, 2409 (1996).

Binary Neutron Star Inspiral and Coalescence (1994)

From: G M Harry, T R Stevenson, H J Paik, Physical Review D **54**, 2409 (1996); X Zhuge, J M Centrella, S L W McMillan, Physical Review D **50** 6247 (1994).

A Comparison of Spheres and Interferometers

- Comparison between spheres and a more advanced interferometer now more relevant
- More relevant to compare spheres with a narrowband interferometer

Compare spheres with an interferometer that uses resonant sideband extraction (RSE)

Model Philosophy

- Create strain spectra using experimentally determinable parameters
- Use parameters that have been or will plausibly be demonstrated within the next 5 years

Use BENCH v1.5 with LIGO II parameters

Use same sphere model as 1996

Truncated Icosahedral Gravitational-wave Antenna

Sphere Parameters I: Transducer

Type: Inductive, Paik Style Number of Modes: 3 **Transducer Material:** Niobium 40 X 10⁶ **Transducer Q:** Mass Ratio: $m_s/m_1 = m_1/m_2 = 100$ **Relative Bandwidth:** 10%

Sphere Parameters II: Thermal Noise

Sphere Material:	Aluminum
Sphere Q:	40 X 10 ⁶
Intermediate Mass:	Aluminum
Intermediate Mass Q:	40 X 10⁶
Temperature:	50 mK

 $S_{sph,thermal} = 2k_{B}T \operatorname{Re}[y_{22}(f)]$

where y (f) is the admittance matrix of the sphere and y₂₂ (f) depends on the Q's

Sphere Parameters III: Amplifier Noise

SQUID Noise Number: $N_n = 1 (!)$ Sensing Coil Diameter: $d_c = 9 cm$ Noise Resistance: $R_n ! ! d_c^2$

Velocity Noise:

$$S_u(f) = 2\pi \cdot N_n f_0 / R_n$$

Force Noise:

 $S_{f,out}(f) = 2\pi \cdot N_n f_0 R_n |y_{22}(f)|^2$

where f_0 is the resonance frequency of the sphere

Sphere Spectrum

Diameter	Mass	Frequency
3.25 m	50 t	795 Hz
2.35 m	19 t	1100 Hz
1.70 m	7 t	1520 Hz
1.25 m	3 t	2067 Hz

Interferometer with Resonant Sideband Extraction

Interferometer Parameters I: Global Values

Arm Length:	L = 4000 m
Temperature:	$\mathbf{T} = 300 \ \mathbf{K}$
Gaussian Width of Laser:	$\mathbf{w} = 6 \mathbf{cm}$
Beamsplitter Thickness:	12 cm
Mirror Thickness:	12 cm
Mirror Radius:	14 cm
Laser Power:	125 W
Laser Wavelength:	(* ! ! 1.064

Interferometer Parameters II: Seismic Noise

Four stages of suspension

Two stages of 6 dof vibration isolation

External hydraulic actuators

Seismic Cutoff Frequency: $f_{seismic} = 10 \text{ Hz}$

$$S_{seismic} = \infty$$
 if $f \leq f_{seismic}$

Interferometer Parameters III: Internal Thermal Noise

Silica Beamsplitter and Sapphire Mirrors Loss Angle of Sapphire: __!!! 5.0 X 10⁻⁹

$$S_{thermal} = \frac{1}{L^2} \frac{4k_B T\phi}{\pi f} C + S_{thermo}$$

where C is the overlap integrals between the normal modes of the mirror and the gaussian-profile laser, and S_{thermo} is the noise due to thermoelastic damping

Interferometer Parameters IV: Suspension Thermal Noise

Suspension Lengt	h: I	L _{sus} = 0.588 m
Mirror Mass:	n	n = 30 kg
Loss Angle of Rib ◀!◀!□ ⁻⁸	bon: _	⊥_ _{rib} !!
Ribbon Thickness	5:	1.7 mm
Dissipation Depth	n of Ribbon:	185 µm
C	16 $k_B T \phi_{eff} g$	

$$S_{susp} = \frac{1}{L^2 (L_{sus} 2\pi f \, m(((2\pi f)^2 - \omega_{pen}^2)^2 + \omega_{pen}^4 \phi_{eff}^2))}$$

where \square_{eff} is a loss angle that includes the effects of dissipation dilution, thermoelastic damping, and surface loss

Interferometer Parameters V: Radiation Pressure Noise

- **Treat Each RSE Sideband Separately for Cavity Response Function G**₀
- **Power at the Beamsplitter:** $P_{BS} = 9.3 \text{ kW}$
- P_{BS} compared to limits from thermal lensingPower Transmittance: $t_1^2 = 3\%$ Power Transmittance: $t_2^2 = 3.75 \times 10^{-3}\%$
- **Power Transmittance:** $t_3^2 =$

$$t_1^2 = 0.75 \times 10^3 \%$$

 $t_3^2 = 0.5 \%$

$$S_{rad} = \frac{16P_{BS} 2\pi \quad \P_1^4 t_3^2 r_2^2 (\frac{1}{|G_{0,1}|} + \frac{1}{|G_{0,2}|})^2}{c\lambda((1 - r_2 r_2)(2\pi f)^2 mL)^2}$$

Interferometer Parameters VI: Shot Noise

Recycling Cavity Length: $L_{rec} = 10 \text{ m}$ Light Transit Time:a = 2L/c

Photodiode Efficiency: • !! 0.9

Interferometer with RSE Spectrum

0.2271 795 Hz 0.1641 1100 Hz 0.1182 1520 Hz 0.08619 2067 Hz

Combined Spectra of Spheres and Interferometers

Accumulated phase δ	Diameter	Frequency
0.2271	3.25 m	795 Hz
0.1641	2.35 m	1100 Hz
0.1182	1.70 m	1520 Hz
0.08619	1.25 m	2067 Hz

Comment on Bandwidths

Sphere's bandwidth depends on impedance matching between the sphere and the SQUID. The maximum available with this three-mode transducer is

BWsphere = 10%

Interferometer's bandwidth depends on input and signal recycling mirrors' reflectivities. The minimum reasonable with our parameters is

BWint = 17%

Since it is unreasonable to match bandwidths, we held t_1 and t_3 fixed and let the interferometer bandwidths vary from 17% to 33%.

Janet's slides on souces go here.

Signal-to-Noise Ratio Calculations

Each antenna was modeled with each source to find the SNR

$$S/N = \int_{-\infty}^{\infty} \frac{\Sigma}{S_{tot}} df$$

where

 $\Sigma_{\text{int}} = |h|^2$

Conclusions

- With our parameters, interferometers with RSE are more sensitive than spheres
- This sensitivity translates into higher SNRs for interferometers for the two sources we considered
- Sphere do have enough sensitivity to detect sources beyond our galaxy
- LIGO II with RSE can see BNS out to distances where they are "guaranteed"
- Coalescence phase of BNS can be detected at distance where an event is likely in a multiyear run
- Addition of gravitational back reaction to BNS model makes little difference to SNRs

A Niche for Spheres

- Simultaneous detection of a gravitational wave by two separate techniques adds confidence to discovery
- Spheres operating near interferometers can help detect stochastic background gravitational waves
- Symmetry of spheres makes searches for scalar gravitational waves natural. This would allow for exploration of gravity beyond general relativity