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Overview

purpose:

• to estimate effects of thermal deformations in optics

• to set grounds for time-domain modeling (E2E)

scope:

• temperature rise in mirror substrates

• deformation of optics due to heating

• change of radii of curvature of mirrors

• effect on modematching and stability of the cavity

• time-domain modeling

background:

• Mirror deformations and wavefront aberrations caused by c.w.
high power laser beams, A.Cutolo et al., 1980

• Analytical models of thermal aberrations in massive mirrors heated
by high power laser beams, P.Hello and J.-Y.Vinet, 1990

• Heating by optical absorption and the performance of interfero-
metric gravitational-wave detectors, W.Winkler et al., 1991



Solution of Heat Equation

temperature in the mirror

T = T0 + δT.

stationary heat equation (Laplace equation):

∇2δT = 0.

characteristic scale:

χ = 4
σ′T 3

0 a

K
, (χ = 0.417).

The roots of the characteristic equation: ζm,
the eigen-values: km = ζm/a

The coefficients pm, Am and Bm:

pm = Pabs
ζ2
m

πa2

e−ζ2
mw2/8a2

(ζ2
m + χ2)J0(ζm)2

,

Am =
pma

K

(ζm − χ)e−3ζmh/2a

(ζm + χ)2 + (ζm − χ)2e−2ζmh/a
,

Bm =
pma

K

(ζm + χ)e−ζmh/2a

(ζm + χ)2 + (ζm − χ)2e−2ζmh/a
.

The temperature rise is given by

δT(r, z) =
∑
m

(
Amekmz + Bme−kmz

)
J0(kmr).



Temperature Rise in the Substrate

Temperature rise along the axis of symmetry (z-axis).
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Deformation of Cylindrical Mirror

Heating of the MC mirrors leads to change of their radii
of curvature.

input laser power Pin.

power absorpted in the mirror: Pa = LGPin,
where G ≈ 650 is the cavity gain and L = 10−6 is the
absorption losses in the coating.

The sagita of the mirror surface (over spot size w):

s0 = R−
√

R2 − w2,

where R is the radius of curvature.

result of Winkler et al:

δs = − αPa

4πK
.

the sagita of the deformed mirror is

s = s0 + δs.

the effective raius of curvature:

R =
s2 + w2

2s
.



Change of Radii of Curvature

Radius of curvature of MC3 as a function of laser power.
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Curvature of MC mirrors as a function of laser power.
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Stability of Fabry-Perot Cavity

mode-stability is defined by cavity g-factors:

g1 = 1− L

R1
, g2 = 1− L

R2
.

the condition for stability is

0 < g2
1g2 < 1.

The boundary of stability and the cavity state as function of the

incident power.
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Change of Beam Waist

axisymmetric beam propagation → resonant mode = (00).

beam waist-size (radius):

w =

√
2zR

k
,

where zR is Rayleigh length,

Ra = za +
z2

R

za
,

Rb = zb +
z2

R

zb

,

zb − za = L.

Here za and zb are the mirror coordinates with respect to
(unknown) waist position.

numerical solution:

w1 = 2.027 mm, (cold)
w2 = 2.043 mm, (hot).

(Heating is estimated for 100 W of incident power.)



Modematching

modematching coefficient:

m ≡ 〈E1E
∗
2〉

(|E1|2|E2|2)
1

2

, M = |m|2.

where E1 and E2 are complex amplitudes of the two modes.

axisymmetric heating: the spot is in the center of the
mirror,
the fundamental (00) modes of cavity.

E1,2 = exp

{
− r2

w2
1,2

}
, ⇒ m =

2w1w2

w2
1 + w2

2

.

power coupling: M = 0.99994.

Modematching as a function of waist and the cavity state.
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Time-Domain Modeling of Mirror
Heating

propagation of heat through the substrate:

τ
∂T

∂t
= ∇′2T,

where ∇′ is the gradient with respect to x′ = x
w

and y′ = y
w
.

the characteristic time scale:

τ =
ρCw2

K
.

the solutions are of the form:

δs(t) ∝ e−t/τ .

frequency response - Laplace-domain transfer function:

H(s) =
1

s + 1
τ

.

time-domain evolution - the digital filter (time step dt):

yn = b0xn + b1xj−1 − a1yj−1.

Tustin algorithm:

a1 =
dt− 2τ

dt + 2τ
, b0 = b1 =

dt

dt + 2τ
.



Step Response of Thermal Deformation

relaxation time

τ = 18.32 s.

Deformation of the mirror with 100 W circulating power as a

function of time.
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Generation of Higher Order Modes

generation of higher order modes is characterized by the
mixing matrix:

〈mn|V |m′n′〉 =

∫
S

E∗
mn(r)V (r)Em′n′(r) d2r,

where Emn(r) are Hermit-Gaussian modes of MC cavity,

and V (r) is the phase-shift operator:

V (x, y) = exp{−2ikδz(x, y)}.

results of numerical calculations (y-shift = 0.1w):

〈00|V |01〉 = −1.4× 10−5 − i 1.0× 10−3,

〈00|V |10〉 = 0,

〈00|V |02〉 = −5.0× 10−6 − i 7.4× 10−4,

〈00|V |20〉 = +4.9× 10−6 + i 2.5× 10−4,

〈00|V |11〉 = 0.

The largest mixing occurs to (01)-mode,
of the order 0.001.



Conclusions

Implications for optics development:

• The effects of thermal deformations in 16m MC are
not significant.

Implications for model development:

• effect of mirror deformations on the cavity field can be
modeled using mode-decomposition approach

• time-domain evolution can be modeled using digital filters


