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Overview

purpose:
e to estimate effects of thermal deformations in optics

e to set grounds for time-domain modeling (E2E)

scope:
e temperature rise in mirror substrates
e deformation of optics due to heating
e change of radii of curvature of mirrors
e effect on modematching and stability of the cavity

e time-domain modeling

background:

e Mirror deformations and wavefront aberrations caused by c.w.
high power laser beams, A.Cutolo et al., 1980

e Analytical models of thermal aberrations in massive mirrors heated
by high power laser beams, P.Hello and J.-Y.Vinet, 1990

e Heating by optical absorption and the performance of interfero-
metric gravitational-wave detectors, W.Winkler et al., 1991



Solution of Heat Equation

temperature in the mirror

T =T + o7T.
stationary heat equation (Laplace equation):
V26T = 0.
characteristic scale:
/T3
X:4“K0a, (x = 0.417).

The roots of the characteristic equation: (,,
the eigen-values: k,, = (n/a

The coefficients p,,, A, and By,:

CQ e—Cnw?/8a?
m — P m 9
Y * 702 (2 + x2)To(Cn)?
A __ DPma (¢m — X)6_3th/2a
" K (Gn+x)2 + (Gn — x)2e 20/
B, = Pmo (Cm + x)enh/2e

K (Gn+x)2+ (G — x)2e 20

The temperature rise is given by

0T (r,z) = Z (Amekmz + Bme_kmz) Jo(kmr).

m



Temperature Rise in the Substrate

Temperature rise along the axis of symmetry (z-axis).
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Deformation of Cylindrical Mirror

Heating of the MC mirrors leads to change of their radii
of curvature.

input laser power P,,.

power absorpted in the mirror: P, = LGPF;,,
where G =~ 650 is the cavity gain and £ = 107° is the
absorption losses in the coating.

The sagita of the mirror surface (over spot size w):
S0 — R — R2 - ’w2,
where R is the radius of curvature.

result of Winkler et al:

aP,
0s = — )
AT K
the sagita of the deformed mirror is
s = so + ds.
the effective raius of curvature:
2 2
R — u

2s



Change of Radii of Curvature

Radius of curvature of MC3 as a function of laser power.
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Curvature of MC mirrors as a function of laser power.
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Stability of Fabry-Perot Cavity

mode-stability is defined by cavity g-factors:
L L

=1-—, =1-—.
g1 R: g2 R

the condition for stability is

O<g%gz< 1.

The boundary of stability and the cavity state as function of the

incident power.
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Change of Beam Waist

axisymmetric beam propagation — resonant mode = (00).

beam waist-size (radius):

QZR
w = P
k
where zp is Rayleigh length,
2
R, = Za"‘Z_R;
Za
2
Ry, = Zb-l-Z—R,
Zb
2y —2q = L.

Here z, and z, are the mirror coordinates with respect to
(unknown) waist position.

numerical solution:

wi = 2.027 mm, (cold)
wy = 2.043 mm, (hot).

(Heating is estimated for 100 W of incident power.)



Modematching

modematching coefficient:
(E,E3)

(|E1[?|E2[?)>

where F71 and E> are complex amplitudes of the two modes.

m = M = |m|°.

axisymmetric heating: the spot is in the center of the
mirror,
the fundamental (00) modes of cavity.

r? 2wiwo
El,Q = e&Xp — 5 3 = m = 5, o
Wi o wi + w3

power coupling: M = 0.99994.

Modematching as a function of waist and the cavity state.
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Time-Domain Modeling of Mirror
Heating

propagation of heat through the substrate:
oT

T— = V’QT,
ot

where V' is the gradient with respect to ' = = and ¢’ = %

the characteristic time scale:
. pCw?
=

T

the solutions are of the form:

§s(t) oc e /7.

frequency response - Laplace-domain transfer function:
1
s +

H(s) =

Rl

time-domain evolution - the digital filter (time step dt):

Yn = boxn + b1xj-1 — a1y;-1.

Tustin algorithm:
dt — 2T dt

al = ——,
dt + 27



Step Response of Thermal Deformation

relaxation time
T = 18.32s.

Deformation of the mirror with 100 W circulating power as a

function of time.
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Generation of Higher Order Modes

generation of higher order modes is characterized by the

mixing matrix:

(mn|V|m/n'y = /E:nn(r)V(r)Em/n/(r) d°r,

S

where E,,,(r) are Hermit-Gaussian modes of MC cavity,

and V(r) is the phase-shift operator:

V(z,y) = exp{—2ikdz(x,y)}.

results of numerical calculations (y-shift = 0.1w):

(00|V|01)
(00|V|10)
(00[|V]02)
(00|V|20)
(00|V|11)

—14x10°—-¢1.0x 1073,
0,
—5.0x107°—¢7.4x 1074,
+4.9x10°+4+i2.5x 1074,
0.

The largest mixing occurs to (01)-mode,

of the order 0.001.



Conclusions

Implications for optics development:

e T he effects of thermal deformations in 16m MC are
not significant.

Implications for model development:

e cffect of mirror deformations on the cavity field can be
modeled using mode-decomposition approach

e time-domain evolution can be modeled using digital filters



