# 8th Meeting of LIGO Scientific Collaboration (LSC) 

March 14-17, 2001

# Modeling of Thermo-Elastic Effects in LIGO-II 16m Mode Cleaner 

Malik Rakhmanov<br>University of Florida<br>LGOG010169-00-Z

White Oak Plantation
Baton Rouge, LA

## Overview

## purpose:

- to estimate effects of thermal deformations in optics
- to set grounds for time-domain modeling (E2E)
scope:
- temperature rise in mirror substrates
- deformation of optics due to heating
- change of radii of curvature of mirrors
- effect on modematching and stability of the cavity
- time-domain modeling


## background:

- Mirror deformations and wavefront aberrations caused by c.w. high power laser beams, A.Cutolo et al., 1980
- Analytical models of thermal aberrations in massive mirrors heated by high power laser beams, P.Hello and J.-Y.Vinet, 1990
- Heating by optical absorption and the performance of interferometric gravitational-wave detectors, W.Winkler et al., 1991


## Solution of Heat Equation

temperature in the mirror

$$
T=T_{0}+\delta T .
$$

stationary heat equation (Laplace equation):

$$
\nabla^{2} \delta T=0
$$

characteristic scale:

$$
\chi=4 \frac{\sigma^{\prime} T_{0}^{3} a}{K}, \quad(\chi=0.417)
$$

The roots of the characteristic equation: $\zeta_{m}$, the eigen-values: $k_{m}=\zeta_{m} / a$

The coefficients $p_{m}, A_{m}$ and $B_{m}$ :

$$
\begin{aligned}
p_{m} & =P_{\mathrm{abs}} \frac{\zeta_{m}^{2}}{\pi a^{2}} \frac{e^{-\zeta_{m}^{2} w^{2} / 8 a^{2}}}{\left(\zeta_{m}^{2}+\chi^{2}\right) J_{0}\left(\zeta_{m}\right)^{2}} \\
A_{m} & =\frac{p_{m} a}{K} \frac{\left(\zeta_{m}-\chi\right) e^{-3 \zeta_{m} h / 2 a}}{\left(\zeta_{m}+\chi\right)^{2}+\left(\zeta_{m}-\chi\right)^{2} e^{-2 \zeta_{m} h / a}} \\
B_{m} & =\frac{p_{m} a}{K} \frac{\left(\zeta_{m}+\chi\right) e^{-\zeta_{m} h / 2 a}}{\left(\zeta_{m}+\chi\right)^{2}+\left(\zeta_{m}-\chi\right)^{2} e^{-2 \zeta_{m} h / a}}
\end{aligned}
$$

The temperature rise is given by

$$
\delta T(r, z)=\sum_{m}\left(A_{m} e^{k_{m} z}+B_{m} e^{-k_{m} z}\right) J_{0}\left(k_{m} r\right)
$$

## Temperature Rise in the Substrate

Temperature rise along the axis of symmetry ( $z$-axis).


## Deformation of Cylindrical Mirror

Heating of the MC mirrors leads to change of their radii of curvature.
input laser power $P_{\text {in }}$.
power absorpted in the mirror: $P_{a}=\mathcal{L} G P_{i n}$, where $G \approx 650$ is the cavity gain and $\mathcal{L}=10^{-6}$ is the absorption losses in the coating.

The sagita of the mirror surface (over spot size $w$ ):

$$
s_{0}=R-\sqrt{R^{2}-w^{2}}
$$

where $R$ is the radius of curvature.
result of Winkler et al:

$$
\delta s=-\frac{\alpha P_{a}}{4 \pi K} .
$$

the sagita of the deformed mirror is

$$
s=s_{0}+\delta s
$$

the effective raius of curvature:

$$
R=\frac{s^{2}+w^{2}}{2 s}
$$

## Change of Radii of Curvature

Radius of curvature of MC3 as a function of laser power.


Curvature of MC mirrors as a function of laser power.



## Stability of Fabry-Perot Cavity

mode-stability is defined by cavity $g$-factors:

$$
g_{1}=1-\frac{L}{R_{1}}, \quad g_{2}=1-\frac{L}{R_{2}} .
$$

the condition for stability is

$$
0<g_{1}^{2} g_{2}<1
$$

The boundary of stability and the cavity state as function of the incident power.


## Change of Beam Waist

axisymmetric beam propagation $\rightarrow$ resonant mode $=(00)$.
beam waist-size (radius):

$$
w=\sqrt{\frac{2 z_{R}}{k}}
$$

where $z_{R}$ is Rayleigh length,

$$
\begin{aligned}
R_{a} & =z_{a}+\frac{z_{R}^{2}}{z_{a}} \\
R_{b} & =z_{b}+\frac{z_{R}^{2}}{z_{b}} \\
z_{b}-z_{a} & =L .
\end{aligned}
$$

Here $z_{a}$ and $z_{b}$ are the mirror coordinates with respect to (unknown) waist position.
numerical solution:

$$
\begin{array}{ll}
w_{1}=2.027 \mathrm{~mm}, & \text { (cold) } \\
w_{2}=2.043 \mathrm{~mm}, & \text { (hot). }
\end{array}
$$

(Heating is estimated for 100 W of incident power.)

## Modematching

modematching coefficient:

$$
m \equiv \frac{\left\langle E_{1} E_{2}^{*}\right\rangle}{\left(\left|E_{1}\right|^{2}\left|E_{2}\right|^{2}\right)^{\frac{1}{2}}}, \quad M=|m|^{2} .
$$

where $E_{1}$ and $E_{2}$ are complex amplitudes of the two modes. axisymmetric heating: the spot is in the center of the mirror, the fundamental (00) modes of cavity.

$$
E_{1,2}=\exp \left\{-\frac{r^{2}}{w_{1,2}^{2}}\right\}, \quad \Rightarrow \quad m=\frac{2 w_{1} w_{2}}{w_{1}^{2}+w_{2}^{2}}
$$

power coupling: $M=0.99994$.
Modematching as a function of waist and the cavity state.


## Time-Domain Modeling of Mirror Heating

propagation of heat through the substrate:

$$
\tau \frac{\partial T}{\partial t}=\nabla^{\prime 2} T
$$

where $\nabla^{\prime}$ is the gradient with respect to $x^{\prime}=\frac{x}{w}$ and $y^{\prime}=\frac{y}{w}$. the characteristic time scale:

$$
\tau=\frac{\rho C w^{2}}{K} .
$$

the solutions are of the form:

$$
\delta s(t) \propto e^{-t / \tau}
$$

frequency response - Laplace-domain transfer function:

$$
H(s)=\frac{1}{s+\frac{1}{\tau}}
$$

time-domain evolution - the digital filter (time step $d t$ ):

$$
y_{n}=b_{0} x_{n}+b_{1} x_{j-1}-a_{1} y_{j-1}
$$

Tustin algorithm:

$$
a_{1}=\frac{d t-2 \tau}{d t+2 \tau}, \quad b_{0}=b_{1}=\frac{d t}{d t+2 \tau} .
$$

## Step Response of Thermal Deformation

relaxation time

$$
\tau=18.32 \mathrm{~s}
$$

Deformation of the mirror with 100 W circulating power as a function of time.



## Generation of Higher Order Modes

generation of higher order modes is characterized by the mixing matrix:

$$
\langle m n| V\left|m^{\prime} n^{\prime}\right\rangle=\int_{S} E_{m n}^{*}(\mathbf{r}) V(\mathbf{r}) E_{m^{\prime} n^{\prime}}(\mathbf{r}) d^{2} \mathbf{r}
$$

where $E_{m n}(\mathbf{r})$ are Hermit-Gaussian modes of MC cavity, and $V(\mathbf{r})$ is the phase-shift operator:

$$
V(x, y)=\exp \{-2 i k \delta z(x, y)\} .
$$

results of numerical calculations ( $y$-shift $=0.1 w$ ):

$$
\begin{aligned}
& \langle 00| V|01\rangle=-1.4 \times 10^{-5}-i 1.0 \times 10^{-3}, \\
& \langle 00| V|10\rangle=0 \\
& \langle 00| V|02\rangle=-5.0 \times 10^{-6}-i 7.4 \times 10^{-4}, \\
& \langle 00| V|20\rangle=+4.9 \times 10^{-6}+i 2.5 \times 10^{-4}, \\
& \langle 00| V|11\rangle=0
\end{aligned}
$$

The largest mixing occurs to (01)-mode, of the order 0.001.

## Conclusions

## Implications for optics development:

- The effects of thermal deformations in 16 m MC are not significant.


## Implications for model development:

- effect of mirror deformations on the cavity field can be modeled using mode-decomposition approach
- time-domain evolution can be modeled using digital filters

