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Introduction:
Thermal Effects in LIGO II
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• Note: the nominal sag of Test Masses is 1µm over
the clear aperture ( 100nm over the beam diameter).
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Thermal Effects in LIGO:
Melody Model
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• LIGO I with low absorption (Heraeus SV) Fused
Silica (0.3 ppm/cm).

• Start to see sideband power loss at 1 Watt input
power.

• Cold curvature optimized.
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Fixing Thermal Effects in LIGO II
Use “Thermal Compensation”

• Directly control the optical properties of a test mass by
depositing energy (radiatively) in a well defined pattern.

• Can only add optical path (you can put heat in, but you can’t
extract it).

• Two methods: Static (heating pattern tailored to generate a
wavefront of fixed shape)

Dynamic .(adjustable heating pattern, able to
generate an “arbitrary” wavefront)
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Shielded Ring, Insulated
Optic

(Fused Silica ITM)
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So What?
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• Same situation as shown originally (slide 2), now
with “realistically” compensated fused silica ITM’s.

• Optic curvatures are “cold optimized”.

• Beamsplitter lens uncompensated.
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Dynamic Thermal Compensation
Theory
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• Work in a basis of 2D functions that are orthog-
onal over the measured aperture (e.g. Zernike poly-
nomials, Znm(r, θ)).

•Work in the basis of “actuation functions” (Ak(r, θ),
the net distortion generated by the laser actuating
with unit power on the kth scan point).

In either case, you calculate (or measure) the re-
sponse matrix A:

~d = A · ~P
Then invert to get the actuation matrix A−1, so

that:
~P = A−1 · ~d
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The Data (So Far)
Shielded Ring, Insulated Optic
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Scanning Laser Thermal
Compensation

Data (Phil Marfuta, ’01)

• Actuator beam waist of 5mm, Optical aperture
radius of 2.5cm, maximum power of 2.5 Watts.

•Demonstrated Zernikes up toZ33 (N=10). Higher
order terms could not be generated.

• Persistent focus term, approximately constant for
each data run.
⇒ Explained by thermoelastic “bowing” of the test
optic.
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Deformations Induced by Scanning
Laser

Data (Phil Marfuta, ’01)
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Conclusions

• Two and three dimensional finite element models
have been built to determine both temperature and
thermoelastic deformation fields in cylindrical optics
under arbitrary heating.

• Heating ring model: for LIGO I layout with cold
curvature optimized fused silica optics, maximum in-
put power increased from 1 Watt to 60 Watts (limited
uncompensated beamsplitter?).

• Heating ring experiment: a prototype ring has
been built, and its effect on optical path has been
measured.

• Scanning laser model: the framework for devel-
oping the actuation basis is in place, still need to
determine an optimum scan resolution.

• Scanning laser model: Zernikes are a bad idea.
Laguerre-Gauss polynomials or actuation functions
alone might be better.

• Scanning laser experiment: Initial tests complete.
Second round of tests to begin in September 2001.

• Also: through the time response of optical path
to the probe beam, thermophysical parameters (ther-
mal conductivity, thermal expansion, etc.) can be ex-
tracted from optical samples (e.g. sapphire). Care-
ful characterization and control of the probe beam
required!


