

Advanced LIGO Systems Design & Requirements

P Fritschel
LSC Meeting
14 August 2001

Upgrade approach & philosophy

- We don't know what the initial LIGO detectors will see
 - » Design advanced interferometers for improved broadband performance
- Evaluate performance with specific source detection estimates
 - » Optimizing for neutron-star binary inspirals also gives good broadband performance
- Push the design to the technical break-points
 - » Improve sensitivity where feasible design not driven solely by known sources

Upgrade approach, cont'd

- Design approach based on a complete interferometer upgrade
 - » More modest improvements may be possible with upgrades of selected subsystem/s, but they would profit less from the large fixed costs of making any hardware improvement
- Two interferometers, the LLO and LHO 4k units, would be upgraded as broadband instruments
- Current proposal for third interferometer (LHO 2k):
 - » increase length to 4 km
 - » implement a narrowband instrument, tunable from ~500 Hz-1 kHz

Estimated strain sensitivity

40 kg sapphire test masses single interferometer NBI range: 206 Mpc

Ligo Top level performance & parameters

Parameter	LIGO I	LIGO II
Equivalent strain noise, minimum	3x10 ⁻²³ /rtHz	2x10 ⁻²⁴ /rtHz
Neutron star binary inspiral range	19 Mpc	300 Mpc
Stochastic backgnd sens.	3x10 ⁻⁶	1.5-5x10 ⁻⁹
Interferometer configuration	Power-recycled MI w/ FP arm cavities	LIGO I, plus signal recycling
Laser power at interferometer input	6 W	125 W
Test masses	Fused silica, 11 kg	Sapphire, 40 kg
Seismic wall frequency	40 Hz	10 Hz
Beam size	3.6/4.4 cm	6.0 cm
Test mass Q	Few million	200 million
Suspension fiber Q	Few thousand	~30 million

System level requirements

- Non-gaussian noise
 - » Difficult to establish quantitative requirements
 - » Subsystems should be designed to avoid potential generation of nongaussian noise
- Availability as for initial LIGO:
 - » 90% for a single interferometer (40 hrs min continuous operation)
 - » 85% for two in coincidence
 - » 75% for three in coincidence
- Environmental sensing
 - » Initial PEM system basically adequate, some sensor upgrades possible
- Infrastructure constraints
 - » Designs must fit with existing LIGO facilities, with two possible changes:
 - Larger diameter mode cleaner tube
 - mid-station BSCs moved to the ends, for 4km length 3rd ifo
- Data acquisition
 - » Same sample rate and timing requirements as for initial LIGOb
 - » Each subsystem must be designed with appropriate data acquisition channels

System level design – basic layout

What we've left out

Internal thermal noise

- » Flat-topped beams to reduce thermo-elastic noise
- » Cooling of the test masses
- » Independent readout of test mass thermal motion

Quantum noise

- » Quantum non-demolition techniques
- » Very high power levels, coupled with all-reflective configurations

Seismic noise

» Independent measurements of gravitational gradient noise

Systems level design: signal recycling

- Provides ability to do some shaping of the response, but principal advantage is in power handling:
 - » Signal recycled interferometer: 200 Mpc NBI range, 2.1 kW beamsplitter power
 - » Non-signal recycled, same input power: 180 Mpc range, 36 kW beamsplitter power
- Limit to signal vs power recycling comes from losses in the signal recycling cavity
 - » Arm cavity finesse of ~1000 probably OK
 - » Arm cavity finesse of ~10,000 probably too high
- Not requiring a tunable or selectable signal recycling mirror transmission
 - » Not necessary for the 'broadband performance' goal

Flexibility in quantum noise

Can gain a factor of ~2 at low (f<40 Hz) and high (f>500Hz) frequencies by positioning the signal recycling mirror at zero phase

LIGO-G010302-00-D

More design additions

Output mode cleaner

- » Reduce the output power to a manageable level; no need for higher power photodiodes
- » Avoid unrealistic technical intensity noise requirements if Watts of power were to be detected
- » Could be a short (~0.5 m) rigid cavity, w/ modest isolation needs ... or essentially a copy of the input mode cleaner, depending on the readout scheme adopted

Active thermal compensation

- Thermal loading & distortions almost certainly larger than in initial LIGO, which is close to thermal instability
- » Required compensation: roughly a factor of 10 in optical path distortion
- » Two compensation methods:
 - Radiative ring heater, close to optic
 - External heating laser beam, scanned over the optic

Input power

Test mass material: sapphire vs fused silica

Sapphire is baseline design:

- » 1.4x larger NBI range
- » Potential for thermal loading advantage
- » Still under development:
 - Size, absorption, homogeneity, scattering

Silica

- » Better understood materials properties
- » Size available, but expensive
- Both suffer from coating losses

Recent correction to BENCH

- Error: Internal noise from bulk mechanical loss not added up for all test masses
 - » Underestimated by a factor of sqrt(2) in h
- Impact:
 - » Sapphire test masses: NBI range reduced from 209 to 206 Mpc
 - » Silica test masses: NBI range reduced from 176 to 142 Mpc
- Coating loss
 - » Lowest coating loss seen: ~3e-5
 - » Sapphire: NBI range reduced to 186 Mpc (10% hit)
 - » Silica: NBI range reduced to 113 Mpc (20% hit)

Test mass & beam size

Test mass size:

» Bigger is better, but 40 kg is a practical maximum for sapphire, in AdLIGO's timescale

Beam size:

Win quickly with sapphire, w^{-3/2}, more slowly with fused silica, w^{-1/2} (& as w⁻¹ for coating loss)

Limits imposed by:

- » Aperture loss in arm cavities
- » Polishing challenges: uniformity over a larger area ;very long radii of curvature
- » Stability of arm cavities in the presence of distortions

Sapphire

» With an upper limit of 15 ppm aperture loss, beam radius of 6.0 cm minimizes thermo-elastic noise, for a 40 kg piece

Silica

» Probably limited more by thermal distortions; using 5.5 cm for now

40 kg sapphire optimization

Aperture loss kept constant at 15 ppm

Seismic wall frequency: 10 Hz

Specific source detection

- » Sensitivity to NBIs or stochastic background doesn't significantly change for cutoff frequencies less than 15 Hz
- » Somewhat more sensitive for intermediate mass BH-BH mergers; still probably no significant loss for any cutoff less than 12-13 Hz

Technology threshold

- » Horizontal ground motion (isolated by seismic + suspension) crosses quantum radiation pressure & suspension thermal noise below 10 Hz
- » Vertical isolation not so large, since last stage of suspension is relatively stiff; couples to beam path at a level of ~0.001
- » Fiber cross section also driven by minimizing thermal noise: smallest diameter fiber is not the best
- » By using a dense penultimate mass material, it appears feasible to keep the vertical mode under 10 Hz

GW channel readout: 2 candidates

- RF readout, as in initial LIGO
 - » Phase modulate at interferometer input
 - » Arrange parameters for high transmission of RF sidebands (one anyway) to output port
- DC readout
 - » Small offset from carrier dark fringe
 - » GW signal produces linear baseband intensity changes
 - » Advantages compared to rf readout:
 - Output mode cleaner simpler
 - Photodetector easier, works at DC
 - Lower sensitivity to laser AM & FM
 - Laser/modulator noise at RF frequencies not critical
- Comparison of quantum-limited sensitivity still in progress

System level noise sources: control of fundamental & technical noise

Quantum noise

» Readout scheme: must not significantly compromise ideal sensitivity

Internal thermal noise

- » Make beam as big as possible (optimized given sapphire size constraint)
- » Don't spoil Q of substrate material, BUT ...
 - Mirror coatings and possibly polishing have a significant effect, that we may not be able to mitigate

Suspension thermal noise

- » Under control: stress and shape of fiber
- » Ribbons (10:1 aspect) give about 2x lower noise
 - improved low-f performance in zero-detuning mode

Technical noise

» Each technical noise source held below 10% of the target strain sensitivity

Ground noise

- Test masses: 10⁻¹⁹ m/rtHz at 10 Hz
 - » Strain noise: 5 x 10⁻²³ /rtHz, 30% & 60% of the target for high-power and low-power operation, respectively
 - » Displacement noise for each seismic platform: 2 x 10⁻¹³ m/rtHz at 10 Hz
 - » Suspensions to provide the additional required isolation

Summary & Plan

- Systems design: resolution of open issues
 - » Sapphire vs fused silica
 - Hinges mostly on success of sapphire development
 - Selection scheduled for mid-20022
 - » Readout scheme
 - Sensitivity analysis in progress, results are weeks-months away
 - Tests of dc readout: bench-top, Glasgow, 40m tests
 - » Optics modeling
 - Need to specify requirements for optics production & active thermal compensation: modeling effort underway with FFT and Melody
 - » Subsystem design requirements reviews being scheduled
 - Suspensions design review scheduled for 20 September
 - » Need to settle on third interferometer design
- Data analysis
 - » Begin working with A Lazzarini to to scope AdLIGO data analysis