Setting an Upper Limit on Stochastic Background Signals

J.D. Romano
University of Texas at Brownsville

LSC Meeting, LIGO Hanford Observatory (LHO)
August 15, 2001
LIGO-G010304-00-Z

Cross-correlation statistic

Define:

$$Y = \int_{-T/2}^{T/2} dt \int_{-T/2}^{T/2} dt' h_1(t) Q(|t - t'|) h_2(t') = \langle h_1, h_2 \rangle$$

where

$$h_1(t) = s_1(t) + n_1(t)$$
: output of GW detector 1

$$h_2(t) = s_2(t) + n_2(t)$$
: output of GW detector 2

Q(|t-t'|): optimal filter, which maximizes the SNR of Y

$$\tilde{Q}(f) = \lambda \frac{\gamma(f)\Omega_{gw}(f)}{f^3 P_1(f) P_2(f)}$$

Assumptions/Properties

1. Stochastic background:

- (a) Gaussian, stationary
- (b) unpolarized and isotropic
- (c) $\Omega_{gw}(f) = \Omega_0 = \text{const}$

2. Detector noise:

- (a) Gaussian, stationary
- (b) noise power ≫ stochastic background signal strength
- (c) uncorrelated between the detectors

3. Cross-correlation statistic:

- (a) Gaussian random variable
- (b) mean: $\mu \propto \Omega_0^2$
- (c) variance: σ^2 dominated by autocorrelated detector noise

Measurements

 Y_1,Y_2,\cdots,Y_N : measured values of the CC statistic for each $T\sim 1$ min stretch of data ($N>10^4$ for E6)

Histogram:

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$
: sample mean of Y_i

$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \overline{Y})^2$$
: sample variance of Y_i

Method I

Use Student's t-test to rule on the presence or absence of a SB signal

- 1. Pose the null hypothesis H_0 : $\mu = 0$
- 2. Set a threshold t_0 using the t-distribution so that, when H_0 is true, $t>t_0$ in less than a fraction α (e.g., 1%) of all observations.

- 3. The test:
 - (a) Define:

$$t = \frac{\overline{Y}}{s/\sqrt{N}}$$

- (b) If $t > t_0$, reject the null hypothesis and conclude we have detected a SB with significance 1α (e.g., 99%).
- (c) If $t \le t_0$, accept the null hypothesis and conclude the observed data is consistent with the absence of a SB.

 $\underline{\rm NB} :$ If \overline{Y} has a large cross-correlated noise component, we may falsely claim the presence of a SB.

Method II

Use Feldman-Cousins approach to set an upper limit or confidence interval on μ given the measurement \overline{Y} .

- 1. Analytically: Assuming Y is Gaussian distributed with variance $\sigma^2=s^2$ for all μ .
- 2. Numerically: Injecting simulated SB signals of known strengths into the data streams.

NB: Conservative upper limit since we are assuming no crosscorrelated environmental or instrumental noise.

Refinements/Alternatives

1. Estimate the cross-correlated noise component by analyzing data stretches shifted in time by amounts > light traveltime between the two detectors.

NB: Only persistent, long-term cross-correlated noise components are accounted for.

2. Throw away outliers in the measured data Y_1, Y_2, \dots, Y_N (e.g., by looking at a $\log(n)$ vs. $\log(Y)$ plot) before calculating \overline{Y}, s^2, \dots

NB: Must always be careful when discarding data.

3. Use Bayesian methods to set an upper limit on the SB signal strength.

NB: Choice of prior.

4. Others??