

Simulation of Burst Waveforms and Burst Event Triggers

Alan Weinstein Caltech Burst UL WG LSC meeting, 8/13/01

Fig. 3 Spectrogram of a composite signal

Models for unmodeled astrophysical waveforms

- MATLAB code has been prepared to generate frames with any combination of:
 - Signal waveforms
 - Chirps, ringdowns, Hermite-Gaussians, Z-M S/N waveforms
 - Noise: none, white, colored gaussian (*simData*), E2, E5
- Including effects of:
 - Detector calibration / frequency response (E2 only, so far)
 - Detector antenna pattern (if desired; but we don't)
 - Delays between IFOs
 - Resampled/decimated to any ADC rate (16384, 2048, ...)

Ringdowns

- Rationale:
 - » Just a way to represent a burst with limited duration, abrupt rise and gradual fall, with some wiggles.
 - » Very well-defined peaked PSD
- Parameters:
 - » Peak h
 - » Decay time τ
 - » Ring frequency f_{ring}

Ringdown PSD

LIGO-G010326-00-R

Hermite-Gaussians

- Rationale:
 - Just a way to represent a burst with limited duration, gradual rise and fall, with some wiggles.
 - » Can also do sine-gaussians, etc
 - » Many beats in the PSD
- Parameters:
 - » Peak h
 - » Gaussian width in time, τ
 - » Hermite order (number of wiggles)

Hermite-Gauusian (6th order) PSD

Chirps

- Rationale:
 - » In case the inspiral filters are not operational for some reason...
 - » Just a way to represent a burst with limited duration, gradual rise and abrupt fall, with wiggles.
 - » Well-defined power-law PSD
 - Simplest Newtonian form; not critical to get phase evolution right since we're not doing matched filtering
- Parameters:
 - » Peak h (or distance D)
 - » Duration Δt
 - » $f(-\Delta t)$, or chirp mass M

LIGO-G010326-00-R

Chirp PSD

LIGO-G010326-00-R

AJW, Caltech, LIGO Project

9

Zwerger-Müller SN waveforms

Rationale:

- » http://www.mpa-garching.mpg.de/Hydro/GRAV/grav1.html
- » These are "real", astrophysically-motivated waveforms, computed from detailed simulations of axi-symmetric SN core collapses.
- » There are only 78 waveforms computed.
- » Work is in progress to get many more, including relativistic effects, etc.
- » These waveforms are a "menagerie", revealing only crude systematic regularities. They are wholly inappropriate for matched filtering or other modeldependent approaches.
- Their main utility is to provide a set of signals that one could use to compare the efficacy of different filtering techniques.
 A1B2G1
 A1B1G5
 A1B1G4

Parameters:

- » Distance D
- » Signals have an absolute normalization

"Typical" ZM SN waveform PSD, 1 kpc

Z-M waveforms (un-normalized)

Z-M waveforms (un-normalized)

Z-M waveforms (un-normalized)

ZM waveform duration vs bandwidth

ZM waveforms buried in white noise

AJW, Caltech, LIGO Project

H-G, chirps, and ringdowns buried in white noise

LIGO-G010326-00-R

AJW, Caltech, LIGO Project

17

Waveforms buried in E2 noise, including calibration/TF

T/f specgram of ZM signal + white noise

19

Same signal, same noise, different tf binning

Colored gaussian noise (simData)

LIGO-G010326-00-R

Monte Carlo of detector "events"

- Can generate, in ROOT, "events" from multiple IFOS, like:
 - » Locked IFO segments (segment), from ad hoc PDFs
 - » Noise events from sngl_burst triggers, random times at specified rates, ucorrelated between IFO's, random h_amp from ad hoc pdf
 - » GW signal event *sngl_burst* triggers, correlated between IFO's with "proper" time delay
 - » "Veto" events, random times at specified rates, ucorrelated between IFO's, random durations from ad hoc pdf (what DB table?)
- Search for coincidences, fill *multi-burst* triggers

MetaDB tables currently defined

• Astrophysics events and GDS Triggers

The event tables hold results of astrophysics searches of defined sources such as inspiral, bursts, ringdowns, directed periodic, and unmodeled-sources. The filters applied for the searches are stored in the filters tables.

	Filters		
	filter	<u>ilwd example</u>	<u>xml example</u>
	<u>filter params</u>	<u>ilwd example</u>	<u>xml example</u>
	GDS Trigger		
	gds trigger	<u>ilwd example</u>	<u>xml example</u>
•	Single-Inferometer Astrophysics Events		
	<u>sngl</u> inspiral	<u>ilwd example</u>	<u>xml example</u>
	<u>sngl burst</u>	<u>ilwd example</u>	<u>xml example</u>
	sngl ringdown	<u>ilwd example</u>	<u>xml example</u>
	sngl unmodeled	<u>ilwd example</u>	<u>xml example</u>
	sngl datasource	<u>ilwd example</u>	<u>xml example</u>
	<u>sngl</u> transdata	<u>ilwd example</u>	<u>xml example</u>
	<u>sngl_mime</u>	<u>ilwd example</u>	<u>xml example</u>

Multi-Inferometer Astrophysics Events
 <u>multi inspiral</u>
 <u>ilwd example xml example</u>
 <u>multi burst</u>
 <u>ilwd example xml example</u>
 <u>xml example</u>

Segment DB table schema

CRI	CATE TABLE segment	
<u>`</u>	A "segment" is a tin	e interval which is meaningful for some reason. For
	example, it may indi	cate a period during which an interferometer is locked.
	Database which creat	ed this entry
	creator_db	INTEGER NOT NULL WITH DEFAULT 1,
	Unique process ID of	the process which defined this segment
	process_id	CHAR(13) FOR BIT DATA NOT NULL,
	Segment group (e.g.	'H2-locked') and version to which this segment belongs
	segment_group	VARCHAR(64) NOT NULL,
	version	INTEGER NOT NULL,
	INFORMATION ABOUT TH	IIS SEGMENT
	Segment start and er	nd times, in GPS seconds and nanoseconds.
	start_time	INTEGER NOT NULL,
	start_time_ns	INTEGER NOT NULL,
	end time	INTEGER NOT NULL,

INTEGER NOT NULL,

end time ns

Sngl_burst DB table schema

```
CREATE TABLE sngl burst
    í.
    -- Event table for single-interferometer burst-event search.
    -- Database which created this entry
          creator db
                             INTEGER NOT NULL WITH DEFAULT 1,
    -- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
    -- Process which generated this event
          process id
                             CHAR(13) FOR BIT DATA NOT NULL,
    -- Filter identifier (indicates type of filter, plus parameters). May be null
                             CHAR(13) FOR BIT DATA,
          filter id
    -- Interferometer
          ifo
                             CHAR(2) NOT NULL,
    -- TIME OF THE EVENT
    -- The start time of this burst event (in GPS seconds and nanoseconds)
          start time
                             INTEGER NOT NULL,
                             INTEGER NOT NULL,
          start time ns
    -- The time duration of this burst event (seconds)
          duration
                             REAL NOT NULL,
    -- PROPERTIES OF THE EVENT
    -- Center of frequency band in which observation is made (Hz)
          central freq
                             REAL,
    -- Range of frequency observed (Hz)
          bandwidth
                             REAL,
    -- Absolute signal amplitude (fractional strain)
          amplitude
                             REAL NOT NULL,
    -- Signal to noise ratio
          snr
                             REAL,
    -- Confidence variable
          confidence
                             REAL,
LIG( -- Unique identifier for this event
          event id
                             CHAR(13) FOR BIT DATA NOT NULL.
```


Multi_burst DB table schema

26

```
CREATE TABLE multi burst
         -- Event table for multi-interferometer burst-event search.
         -- Database which created this entry
               creator db
                                   INTEGER NOT NULL WITH DEFAULT 1,
         -- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
         -- Process which generated this event
               process id
                                   CHAR(13) FOR BIT DATA NOT NULL,
         -- Filter identifier (indicates type of filter, plus parameters). May be null
               filter id
                                   CHAR(13) FOR BIT DATA,
         -- Interferometers used for this search
               ifos
                                   CHAR(12) NOT NULL,
         -- TIME OF THE EVENT
         -- The start time of this burst event (in GPS seconds and nanoseconds)
                                   INTEGER NOT NULL,
               start time
               start time ns
                                   INTEGER NOT NULL,
         -- The time duration of this burst event (seconds)
               duration
                                   REAL NOT NULL,
         -- PROPERTIES OF THE EVENT
         -- Center of frequency band in which observation is made (Hz)
               central freq
                                   REAL,
         -- Range of frequency observed (Hz)
               bandwidth
                                   REAL,
         -- Absolute signal amplitude (fractional strain)
               amplitude
                                   REAL NOT NULL,
         -- Signal to noise ratio
               snr
                                   REAL,
         -- Confidence variable
               confidence
                                   REAL,
IIGO-G01( -- Direction of Hanford-to-Livingston ray at time of event
```

-- (i.e. the central axis of the cone on which the source lies)

Daniel's *Event* Class to represent DB events in ROOT

🗾 Event Analysis Package.

Event Analysis Package

- <u>Event class</u> Event class and helpers
- Event functions Event functions
- Event conditions Event functions
- Event containers and algoithms Event containers and algoithms

The event analysis package provides means to analysis events generated by the LIGO detectors. Its major components are:

Event - A set of classes defining a general purpose event Containers - A set of containers to store events Functions - Function objects acting on events Conditions - Conditions acting on events Algorithms - A set of algorithms to select and histogram events

An event is an object consisting of a time, a type, an interferometer set and an arbitrary number of columns.

The layout of the class library is as follows

Type - Describes an event type IfoSet - Describes the origin of an event Event - The basic event object (inherits from Type and IfoSet)

Example with 4 IFOs (not yet with *Event* class)

• 4 IFOs (can do bars, **SNEWS**, etc) •In this example, 5 hours of data •Locked segments are shown; brief periods of loss of lock. • fake randoms are red; correlated GW bursts are green •Vetoed stretches not displayed here; but available •This is all still in ROOT; need to write ilwd, deposit into metaDB, read back into ROOT from DB, do coincidence analysys. 28

LIGO-G010326-00-R

Delayed 2-fold coincidence analysis

L4K / H4K

K4K / VIRGO

In these examples, real event rate was very high (10/hr !), fake rate "realistic" (100/hr)

Proposed frames for MDC

WHITE NOISE

- one second of white noise sampled at 16384, stored as floating point with mean 0 and width 1, in a single frame file with one channel, channel H2:LSC-AS_Q
- same as above, 64 seconds (2²⁰ samples)
- same as above, 8.53 minutes (2²3 samples)

COLORED NOISE

- the same with COLORED noise

E2 NOISE

- 1 second of E2 H2:LSC-AS_Q data
- 64 seconds of E2 H2:LSC-AS_Q data

COLORED/E2/E5 NOISE with signal>RF:

- 64 seconds of white noise sampled at 16384, as above,
 - on which is added a ZM waveform every second on the half-second filtered through the E2 transfer function and with a h_peak that is roughly X (3?) times the min noise sigma.
- same, with 100 msec ring-downs (f0 ranging from 100 to 300 Hz).

The big question

- How best to characterize waveforms and our response to them in an astrophysically meaningful way? h_{rms} , Δt , [f₀, f₀+ Δf]
- Some "inner product" of filter to waveform?

•

Many little questions

- How long a data stretch should we analyze in one LDAS job? (Inspiral people use 2²³ samples = 8.533 minutes...)
- How much (should we) decimate from 16384 Hz? Inspiral people decimate down to 1024 or 2048; there is little inspiral power above 1 kHz. Not so for millisecond bursts! (Bar people look for delta function – a single ADC count).
- How much overlap should we include?
- What's the best way to insert fake signals? Randomly in time? With/without antenna pattern? How to systematically explore parameter space?
- Where/when do we fully whiten the (somewhat whitened) data?
- At what stage do we apply gross vetos (IFO in lock), finer vetos (coincidence with PEM event), etc?
- How to package TF curve with data in frames?

LIGO-G010326-00-R

. . .