Depolarization in $\lambda/2$ Plate and Faraday Isolator

S. Yoshida^{*} and J. Day**

* LIGO Livingston Observatory /SLU/UF ** Southeastern Louisiana University

LIGO-G010363-00-Z

- Contents -

- Depolarization in zero-order $\lambda/2$ plate
- Depolarization in zero-order $\lambda/2$ plate & Faraday Rotator
- Explain previous experimental results
 S. Yoshida¹⁾, E. Khazanov²⁾, O. Kulagin²⁾, D. H. Reitze¹⁾, and D. B. Tanner¹⁾
 ¹⁾ University of Florida
 ²⁾ Institute of Applied Physics

 $\lambda/2$ plate in Faraday Isolator

Experimental setup for one HWP

$$P_{in} = P_r + P_t$$

Depolarization = P_t / P_{in}

Measured depolarization (one HWP)

Measurement and calculation depolarization (one HWP)

Fig.1 zero-order HWP and an analyzer cross-polarized to slightly elliptical output polarization.

Fig.3 Depolarization due to imperfection of a half-wave plate

Depolarization in aligned HWP (He Ne)

Fig.3 Rotate two components plates of HWP independently

 $\lambda/2$ plate in Faraday Isolator (w/ depolarization)

 $\gamma \sim 2 \ 10^{-5}$

Forward-going beam

Backward-going beam

Depolarization in Faraday Isolator (HWP + FR)

Depolarization in Faraday Isolator (HWP + FR + HWP)

Depolarization in Faraday Isolator (HWP [+ FR] + HWP)

Nd:YAG laser power dependence

Depolarization in Faraday Isolator (HWP + FR + HWP)

Relative phase retardation in TGG crystal

