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Abstract
In this talk I will motivate and discuss a method for the detection of

burst events, which is “optimal” under the assumptions that the noise is
Gaussian (and colored) and that the signal waveform is totally unknown.
It is similar to the energy excess statistic proposed by Flanagan et al.,
but differs in the choice of the prior distribution for the GW events.
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Motivations

At least two astrophysical phenomena can originate short bursts of gravi-
tational waves:

✔ the merger phase in a binary star (or black-hole) coalescence, and

✔ the collapse of the core in type-II supernovae

In both cases, it is fair to say that a large theoretical uncertainty exists on the
resulting waveforms.

Models exist, but it is probably wise to be ready for the unexpected.
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A zoology of GW waveforms: the Zwerger-Müller catalog

A glimpes at models helps in building some idea of what can be expected

✔ ZM made a simulation of the dynamics of rotational core collapse in mas-
sive stars[1].

✔ Axisymmetric rotating stars are assumed to be governed by a polytropic
equation of state

P =
{

κρΓ1 if ρ≤ ρnuc
κρΓ2 otherwise

✔ A newtonian hydrodynamic code is used to simulate the evolution of the
star during the collapse.

✔ Depending on the values of Γ and on the radial distribution of the angu-
lar momentum, several different waveforms result: some 78 examples are
available at http://www.mpa-garching.mpg.de/ ewald/GRAV/grav.html
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Some time-domain events
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About 80 waveforms, depending on the nuclear equation of state and on
the distribution of angular momentum in the star.
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Spectral distribution of ZM events
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Rather broadband spectra, corresponding to the relatively short events in
the time domain, with features shorter than 1ms.
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A look at all the ZM models together
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The plot is taken from http://www.mpa-garching.mpg.de/Hydro/GRAV/grav1.html
and the “error bars” indicate the frequency range containing most of the signal
strength (normalized at 10Mpc).
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Main characteristics of the signals

✔ Narrow peaks corresponding to “bounces” in the core collapse, with a 1~10
msec width.

✔ Oscillatory decay patterns, heavily dependent on the physical parameters.

✔ Roughly two signal classes: with a narrow or a broad spectral distribution
of the signal.

✔ Typical radiated energy in the range 6×10−11≤ EGW
M�c2 ≤ 8×10−8, and a

resulting amplitude (at 10 kpc) not exceeding O
(
10−20

)
; detectable only

inside the Milky Way by LIGO or Virgo.

In short: many different waveforms, which cannot be expected to be very
strong, nor are easily captured by templates: at best they can be characterized
by their frequency band.
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Some possible approaches to detection

✔ Set up simple algorithms which capture some of the characteristics of the
waveform [see for instance Arnaud et al.[2, 3, 4]]

✘ δ-function filters (peak detectors) for the spikes
✘ exponentially damped sinusoids for the “after-bounce” evolution
✘ slope detectors for the (approximately) linearly growing strain, preceding

the bounce

✔ Rely on methods which detect deviations from the noise background (in a
given band)

✘ The excess energy detector by Flanagan et al.[5] and Anderson et al.[6]
✘ A optimal burst detector, similar to the excess energy method, whose

principle and application is the topic of this talk [7].
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Starting points

✔ Gaussian noise: in absence of signal, a data vector n is distributed as

Pn(n)dn =
1√

(2π)N detR
exp

[
−1

2
ni

(
R−1

n

)
i j

n j

]
∏

k

dnk;

with a correlation matrix Rn.

✔ Total ignorance on the signal s: hence

ps(s)ds= ∏
k

dsk

is a priori distribution which does not introduce a preferred scale.

✔ Because of the noise, the probability of observing x conditioned by the
signal s is

P(x|s) =
1√

(2π)N detR
exp

[
−1

2
(x−s) ·R−1

n · (x−s)
]
.
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Probability and likelyhood

Let P(1) / P(0) be the a priori probability of signal presence / absence:

P(x) = P(x|1)P(1)+P(x|0)P(0)

is the probability of observing a data vector x, where

P(x|1)≡
∫

P(x|s)ps(s)ds

is the probability of receiving x, in presence of a signal of any form. We are
interested in P(1|x), the probability that some signal is present in x: via Bayes

P(1|x) =
Λ(x)

Λ(x)+P(0)/P(1)

where the likelihood Λ(x) is

Λ(x)≡ P(x|1)
P(x|0)

=
∫

e−
1
2s·R−1

n ·s+s·R−1
n ·xps(s)ds
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The choice of the prior

The choice of ps(s) is crucial in determining the statistic: for instance, if

ps(s) = f
(
s·R−1

n ·s
)

one can obtain the excess energy detector of Anderson et al. [6].

Our choice is instead to assume that the signal affects just Nburst � N
samples, where N is the size of the data vector

and that each signal bin can assume a priori any value.

We search for signals in the space V ‖, a subspace of V ; in turn a vector
long enough to resolve the spectral features.

The analysis consists of sliding the analysis window, computing an ap-
propriate statistic on each possible V ‖ space, and applying some statistical
test.
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The “optimal” statistic

Integrating over all possible signals swith the condition that they affect just
Nburst samples we obtain for the log-likelihood

lnΛ(x)≡ L(x) = ∑
i, j∈V‖

(
R−1

n ·x
)

i

(((
R−1

n

)
‖

)−1
)

i j

(
R−1

n ·x
)

j
.

where we have defined the statistic L, which needs to be estimated on each
block of Nburst data, out of N input data.

There are essentially two analysis steps:

✔ filtering the data to obtain the vector y = R−1
n ·x;

✔ restricting the vector y on the V‖ subspace and build the scalar product
y ·M−1 ·y with M ≡

(
R−1

n

)
‖: the inverse of Rn, restricted to V‖.

Complicated? Not really!
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Filtering step

The first step
y = R−1

n ·x :

becomes in the Fourier domain

y[l ] =
2
N

N−1

∑
k=0

x̃[k]×1
Sn [k]

e−i2πk l/N

which means Wiener filtering with δ-function template (whose DFT is a con-
stant).

One understands that N needs to be large enough to resolve the spectral
features in the input data: otherwise, the relation

(Rn)ab =
1
2

N−1

∑
k=0

Sn [k]e−i2πk(a−b)/N

between the spectrum Sn and the correlation matrix Rn would not be accurate.
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Assembling the statistic ...

The next step seems cumbersome: one should

✔ estimate the N×N matrix Rn and invert it, obtaining R−1
n ;

✔ restrict the resulting matrix to indices in the V‖ subspace, obtaining a
Nburst×Nburst matrix

(
R−1

n

)
‖

✔ Invert again the matrix, and sandwich it between the y‖ vector, obtaining

L = y‖ ·
[(

R−1
n

)
‖

]−1
·y‖

This sequence of inversion, projection and inversion looks awkward, but be-
comes simple if we recall how y was obtained.
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A simpler form

Recalling the definition of y

y≡ R−1
n ·x,

the correlation matrix Ry of the process y (in absence of signal) is just

Ry = R−1
n ;

hence our statistic becomes simply

L = y‖ ·
[
(Ry)‖

]−1
·y‖

which is quite intuitive: data y need to be weighted with the inverse of their
noise matrix Ry.

What we need to address now is how to perform this inversion in a com-
putationally efficient way.

Andrea Viceré LIGO-G010384-00-E 14



A limiting case

Suppose that Nburst is large enough: in this case the correlation matrix can
be approximated by the DFT of the corresponding noise spectrum, and

L≈ fs
Nburst

Nburst/2−1

∑
k=1

∣∣ỹ‖ [k]
∣∣2

Sy [k]

which is similar (apart the δ-filtering step) to the excess energy of Anderson
et al.

It should be understood that Sy is the spectrum at a frequency resolution
fs/Nburst, hence different from Sn [k]−1 used in the δ-filtering step.

The question is however: how L can be computed if Nburst is not large?

And further, what does it mean large or small in this context?

To answer both question we need to write a convenient exact form of L.
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The Karhunen-Loève decomposition

The matrix (Ry)‖ has eigenvectors ψk and eigenvalues σk: therefore

(Ry)‖ =
Nburst

∑
k=1

σkψk⊗ψk and (Ry)
−1
‖ =

Nburst

∑
k=1

1
σk

ψk⊗ψk

the eigenvectors look like sines and cosines
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What is the advantage of the DKL?

Given the DKL decomposition

y‖ =
Nburst

∑
k=1

ckψk

the burst statistic is simply

L =
Nburst

∑
k=1

c2
k

σk
;

the ck coefficients are statistically uncorrelated

E [ckcl ] = σkδkl

and Gaussian distributed.

Notice that the DKL basis does not depend on the position of the analysis
window (if the noise is stationary ). Of course, the coefficients ck do.
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An example Of ck coefficients from LIGO 40m data
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Hierarchy of the ck coefficients (40m data)

The variances σk of the ck coefficients induce a natural order in the ψk

basis
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a larger variance corresponds to a “more important” or “noisy” component.
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DKL variances and the RMS noise

It should be clear that Poisson theorem holds, and the RMS noise is just
the sum of the variances σk corresponding to the DKL components
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as can be visualized subtracting some of the more noisier components.
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Statistics

It can be directly shown that each DKL coefficient is distributed as a Gaus-
sian variable, hence the L statistic is a χ2 with Nburst degrees of freedom

d(L|SNR) =
LNburst/2−1e−

1
2(L+

√
2Nburst SNR)

2Nburst/2Γ(Nburst/2) 0F1

(
;
Nburst

2
;
SNRL

√
2Nburst

4

)
;

the “pure noise” case is recovered with SNR=0
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we need to assign a L value to d(L|0) or d(L|SNR) for some SNR.
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Outputs are cross-correlated

Instances of the statistic L relative to different time windows are correlated:
for instance for Nburst = 1 one has simply

1
2

(
E [La(x)Lb(x)]

E [La(x)]E [Lb(x)]
−1

)
=

[(
R−1

n

)
ab

(R−1
n )aa

]2

and the correlation typically decays exponentially

0.5 1 1.5 2
t msec

0.2

0.4

0.6

0.8

1

Virgo

LIGO 4K

which sets the sampling frequency for L.
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A tool for event characterization

We have argued that the event detection corresponds to some threshold-
ing on the L statistic: given that, a burst can be characterized by

✔ the noise background:

✘ the spectrum Sn at resolution 1/N, needed for δ filtering
✘ and Sy at resolution 1/Nburst (or alternatively Ry) , needed to build the

statistic.

✔ The event characteristics:

✘ the time window where the threshold is exceeded
✘ the coefficients of the DKL decomposition, in the Nburst subspace, which

deviate from the expected Gaussian distribution.

In short: a Principal Component Analysis. In particular, only a subset of the
DKL coefficients may be needed to keep a record of the event.
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Extension to the network case

There are three more ingredients that we need in order to generalize the
algorithm to a network of interferometric detectors

1. appropriate factors and delays are needed, depending on the direction of
the source, which needs to be scanned.

2. Each detector comes with a different noise distribution, and

3. the noise can be correlated among the detectors.

Not too surprisingly, these ingredients contribute essentially only to the δ-
filtering step.

The reason is that, given the chosen prior for the signal, the detection
is truly a search for δ-events (coherent step) followed by a quadratic sum,
properly weighted, over the filter outcomes (un-coherent step).
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A network filter for δ-like events

The first step is to search for δ-events

yL [l ]≡∑
Kk

(
R−1
)

LK lk
xK [k+dK] ,

where R is a 4 index matrix, with indices running over detectors and lags.

Its approximate expression is much more intuitive

yL[l ]' 2
N

N−2

∑
k=1

e−i2πkl/N

SLL [k]

[
x̃L [k]− ∑

K 6=L

SLK [k]
SKK[k]

x̃K [k]

]
;

and hopefully adequate, as long as the cross-spectra SLK are small with re-
spect to the noise spectra SLL in individual detectors.
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Antenna patterns, and the “network” statistic

One needs to introduce the antenna patterns

FL (θ,φ)≡
(

F+
L

F×L

)
and a 2×N matrix combining the data and the patterns

y ≡
(

y+
y×

)
= ∑

L

FL⊗yL;

it depends on the direction in the sky, but not very rapidly.

Now y‖ shall have a (2×Nburst)× (2×Nburst) correlation matrix

Θ = E
[
y‖⊗y‖

]
and

L = y‖ ·Θ−1 ·y‖
is the formal expression for the network statistic.
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The devil hides in the details

The practical implementation requires to introduce two DKL bases

ψk
+ and ψk

×

for the two polarizations: but Θ−1 is complicated because ψk
+ ·ψl

× 6= δkl.

Worse, both bases depend on the direction in the sky!

Only if Nburst is large, the DFT can replace the DKL and things get simpler:
from y+,y× we compute the “network” spectrum

Sy [k]≡
(

S++ [k] S+× [k]
S×+ [k] S×× [k]

)
and the statistic becomes

L ∝
Nburst−2

∑
k=1

[ỹ [k]]H‖ · [Sy [k]]−1 · [ỹ [k]]‖

which is however just an approximation.
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A simple example: a network search for δ events

Suppose we use the global GW network to search for events affecting just
one sample: then

x̃L [k] =
(
A+F+

L +A×F×L
) 1

fs
e− j2πka/N

is the response of each detector. The matrix Θ becomes simply

Θ = ∑
L

rms(yL)

( (
F+

L

)2
F+

L F×L
F+

L F×L
(
F×L
)2

)

where yLis computed as before, and in absence of noise is

y‖ = ∑
L

rms(yL)
(
A+F+

L +A×F×L
) ( F+

L

F×L

)
;

we can assemble the statistic L = y‖ ·Θ−1 ·y‖.
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The global network
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Black lines represent the ITF axes.

Colored lines represent the axes of the detector frames and of the Earth
frame.

Z crosses the North pole

X crosses the Greenwich meridian
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Noise in the individual detectors

The design sensitivities
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are needed only to compute

rms(yL)≡ 1
fsN

N/2−1

∑
k=1

1
SLL [k]

' 1
f 2
s

∫ fNyquist

fseism

d f
SLL ( f )

.

Andrea Viceré LIGO-G010384-00-E 30



The response of the LIGO network
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Adding Virgo to the network
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Left: LIGO alone, right LIGO+Virgo.

The Virgo detector gives a substantial enhancement thanks to its wider
bandwidth, despite the lower sensitivity in the 60−300Hz band
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Adding GEO and TAMA
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With the current design sensitivity, they don’t make a great difference.

Andrea Viceré LIGO-G010384-00-E 33



Whole network versus GEO and Virgo alone
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The statistic L is quadratic in the signal amplitude, thus enhancing the
visual effect when combining detectors. Of course the detection probability
matters, and should be gauged on the χ2 distribution.
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Conclusions

✔ An algorithm for burst detection “optimal” under the assumption of total
ignorance about the signal waveform was deduced.

✔ It can be exploited both to detect and to characterize an event. A true
signal, or a burst of non-gaussian noise.

✔ The single detector form is simple: the multi-detector form is much more
complicated, apart the two limiting cases of Nburst = 1 or Nburst� 1.

✔ If (as it is very likely) there is significant non-gaussian noise in the detec-
tors, probably a coincidence strategy is more effective.

✔ A fuller description can be found in the preprint LIGO-P010019-00-E [7].

✔ People willing to create plots of the network sensitivity (for δ-bursts) varying
viewpoints, detector locations, sensitivities, can download a Mathematica
notebook at http://www.ligo.caltech.edu/ avicere/nda/burst/Burst.nb
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