

LSC Data Analysis

Alan G. Wiseman (LSC Software Coordinator) agw@uwm.edu

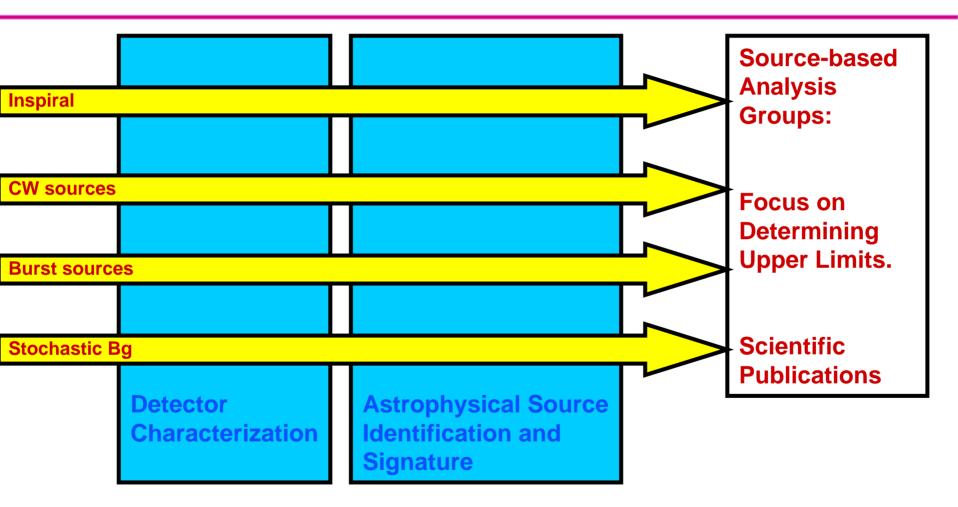
LIGO Scientific Collaboration University of Wisconsin -- Milwaukee

LSC Data Analysis Goals

- ... to use gravitational wave interferometers to test relativistic gravitation and observe the universe.
 - » What science is realistically attainable?
 - » How do we organize the human resources to accomplish the goal?
 - » How do we maintain the integrity of the software?
 - » How do we bring the data, the computational resources (hardware) and the people together?

What science is realistically attainable?

- Inspiralling binary stars.
 - -- known templates, known event rate
- Continuous waves (pulsar)
 - -- known pulsars
 - -- all-sky, all-frequency pulsar search
- Burst sources (short duration)
 - -- unmodeled (or weakly modeled)
 - -- unknown sources
 - Stochastic Background
 - -- probe of the early universe

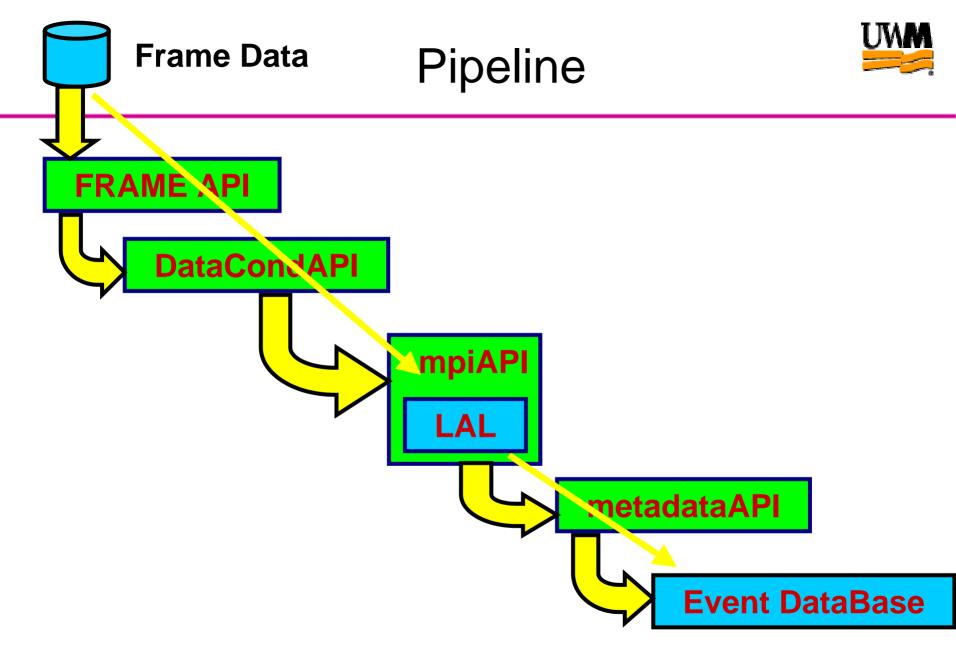

Caveat: with Early LIGO configurations "... it is plausible, but not likely" we will see something

Therefore ... Upper Limits

LIGO-010410-00-Z

How to organize the human resources to accomplish the goal

Upper Limits Groups


- **Goal:** Do science with engineering (E7) data exactly the way we intend to do science with science-run data.
 - » Use/Test LDAS
 - Each ULG has an LDAS Integration Phase (MDC) built into the schedule
 - » Broad Cross-Section of people (experimentalist, theorists)
 - » Organized around four separate searches: Inspiral, Stochastic Background, Burst, Continuous waves
 - Currently driving motivation for code development within ASIS
 - » Detector Diagnostics
 - Healthy effort (across party lines) to work on diagnostic triggers
 - close interaction with existing detector characterization group.
 - » Publications:
 - Each group has a paper on the schedule
 - » Originated as Internal LSC Proposals

How do we assure integrity of the software?

Rules:

- 1. The scientific search engine must be LAL-compliant software. [LAL= LSC Algorithm Library]
 - -- Reusable data structures
 - -- fault tracking
 - -- Documentation requirements
 - -- Functions have a prescribed interface (LDAS)
- 2. LIGO Data products in ... LIGO Data products out.
- 3. Entire analysis pipeline must be tested in a Mock Data Challenge. [Blind injection of signals.]
- 4. Stable software environment, e.g. CVS, Software Change Control Board, bug tracking

Mock Data Challenges

- Each is undertaken as a working group
- Monitored by the Software Coordinator and Committee
- 1) Data Conditioning MDC Sam Finn. [Done]
- 2) MPI MDC (wrapperAPI) Patrick Brady. [Done]
- 3) Database MDC Peter Shawhan. [Done]
- 4) Scientific Inchpebbles [Spring- Summer 2001].
 - » Sequential Integration of all the search algorithms into the LDAS system
 - -- Inspiral: Patrick Brady [May 01]
 - -- Stochastic Background: [Sept 01]
 - -- Burst (unmodeled sources): [Sept 01]
 - -- Continuous Waves (pulsar): [Now]
- 5) Archive MDC
- 6) Integrated Science MDC

How do bring the people and the compute cycles together?

• Currently: (in)formal agreements to share hardware e.g. Burst/Stochastic MDC took place at MIT, Monte Carlo for Burst Search is taking place at UWM

• In the future:

- Grid Computing
- Development of (non LIGO Lab) Tier II centers at PSU and UWM
 - Mirrors of large data sets
 - Provide access (hardware and data) for LSC members
 - Provide resources for exploratory work

LLSE Gata atary Sin alty Sin Bage Oals

• ... to use gravitational wave interferometers to test relativistic gravitation and observe the universe.

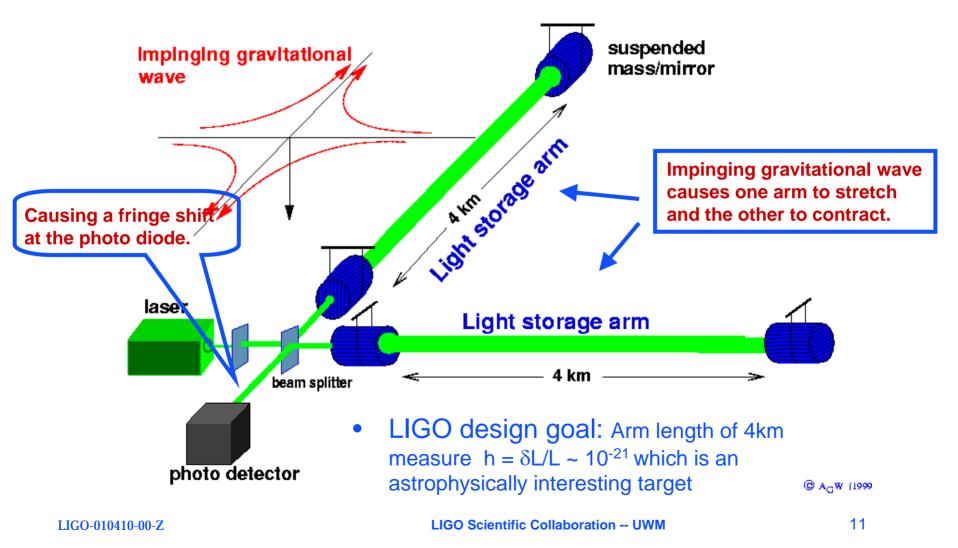
Chapter 2

» What science is realistically attainable?

Chapter 3

» How do we organize the human resources to accomplish the goal?

Chapter 4


» How do we maintain the integrity of the software?

Chapter 5 and 6

» How do we bring the data, the computational resources (hardware) and the people together?

How LIGO Works

The Grid in Grid Computing

- Analogy with the electrical power grid
 - » you don't care where or how power for your toaster is generated
 - » you just want results (toast!)
- Grid computing to provide robust, uniform, access to distributed high performance computing resources
 - » don't necessarily know (or care) from where cycles are delivered
 - » you just want to do science
- Evolve to include access to computing resources AND data
 - » robust access to data, both raw or "real" and derived or "virtual" data

