LIGO: The Search for Gravitational Waves

Gregory M. Harry LIGO Laboratory/Massachusetts Institute of Technology - On behalf of the LIGO Science Collaboration -

> January 21, 2002 Worcester Polytechnic Institute Department of Physics Colloquium

Overview

- General relativity and gravitational waves
- Sources of gravitational radiation
- Interferometers and LIGO
- Noise and technology
- Next steps
- Current status

Einstein's Theory of Gravity

- Mass tells spacetime how to bend
- Spacetime tells mass how to move

Electromagnetism and Gravity

 $\begin{array}{l} \textit{Electromagnetism} \\ \textit{Coulomb} \rightarrow \textit{static charge} \\ \textit{Maxwell} \rightarrow \textit{oscillating fields} \\ \textit{Hertz} \rightarrow \textit{radio waves} \end{array}$

 $\begin{array}{l} \textit{Gravity} \\ \textit{Newton} \rightarrow \textit{static masses} \\ \textit{Einstein} \rightarrow \textit{oscillating spacetime} \\ \textit{?} \rightarrow \textit{gravitational radiation} \end{array}$

Tests of general relativity

Precession of Mercury's orbit

Einstein Cross

Bending of light near massive objects

Gravitational Waves Generation

- Effect of mass on spacetime propagates in finite time
- Accelerating masses create spacetime waves
- Waves travel at speed of light, c

gravitational radiation from binary inspiral of compact objects

Gravitational Waves Observation

Binary Neutron Star System Changing quadrupole moment of system causes emission of gravitational waves.

PSR 1913 + 16 -- Timing of pulsars

Energy loss causes orbital period to decrease

Gravitational Waves Evidence

• Energy is lost to gravitational waves

GO

- Orbital period decreases
- Deviation grows as predicted by Einstein

Gravitational Waves Effect on matter

- Freely falling masses move in response to the gravitational wave
- Gravitational wave is a tensor so masses move in both transverse directions

- Two polarizations, X and +
- Amplitude measured in strain, $\Delta L / L (= h)$

Gravitational Waves Detectors

Resonant mass antennas Bars and spheres Allegro, Explorer, Auriga, Niobe, GRAIL, Schenberg

Earth-based interferometers LIGO, Virgo, GEO, TAMA, advanced LIGO

Space-based interferometers LISA

Sources of Detectable Gravitational Waves

New window on the universe

- Inspiraling binary compact objects (neutron star, black hole)
- Supernovae
- Compact body merger
- Stochastic background

Sources Compact binary inspiral

- Black holes and/or neutron stars
- Measure masses, spins, distance, and location
- Waveform modeled analytically
- Correlate with EM counterpart (γ burst ?)

- Rates estimated from known pairs
 - NS/NS
 - Initial LIGO, 1/10 yr
 - Advanced LIGO, 1/month

GO

Sources Supernovae

- Must be non-axisymmetric
- Rate uncertain
 - ~ 3/yr at Virgo Cluster (20 Mpc)

SN1987A

Sources Compact binary merger

Merger Inspiral Ringdown **Black hole formation** • True GR regime **Uncertain rate BH/BH** h Initial LIGO, 1/yr (?) time Advanced LIGO, 1/hr (?) known > supercomputer < known simulations ~1000 cycles ~1 min

GO

o Sources Stochastic background

Cosmic background from Big Bang

• Big surprises likely

LIGO Interferometry

- 4 kilometer long arms
- All subsystems designed for low noise
- Feedback allows for sensitivity h ~ 10⁻²¹

- Test mass hangs like pendulum
- Approximate freely falling bodies

LIGO Two sites

Allows for correlated searches

LIGO-G020005-00-0

LIGO-G020005-00-0

LIGO Collaboration

LIGO Scientific Collaboration

LIGO Laboratory

Caltech MIT LIGO Hanford Observatory LIGO Livingston Observatory

ACIGA (Australian Consortium) Caltech Center for Adv. Computing Research Caltech Relativity Theory Group Caltech Experimental Gravity Group Calif. State U., Dominguez Hills Carleton College Cornell U. U. of Florida GEO 600 Collaboration (British/German) Harvard-Smithsonian Center for Astrophysics Institute of Applied Physics–Nizhny Novgorod Iowa State U. IUCAA (India)

JILA – U. of Colorado Louisiana State U. Louisiana Tech U. U. of Michigan Moscow State U. National Astronomical Observatory of Japan U. of Oregon Penn. State U. Southern U. Stanford U. Syracuse U. U. of Texas, Brownsville U. of Wisconsin, Milwaukee

International Network

Plus bar detectors in Louisiana, Italy, and Australia

LIGO-G020005-00-0

LIGO

LIGO Facilities

- Everything under vacuum
- All 4 km beam tube baked out
- Vacuum limited at 10⁻⁶ torr by water outgassing

Noise Total noise

Noise Seismic noise

- All optics sit on vibration isolation stacks
- Alternating layers of masses and springs
- Isolate above 40 Hz
- Reduce seismic motion by 4-6 orders of magnitude
- Some compensation for Earth tides

Noise Thermal noise

- Brownian motion of optics
 - Pendulum mode
 - Internal mirror modes
 - Use fused silica for mirrors
- Limiting noise source in most sensitive region

Suspended Optic

Noise Laser

- Nd:YAG
- **1.064** μm
- Use TEM00 mode
- 8 W output power

Down to shot noise limit

Noise Current status

Advanced LIGO Plans

- "See" out to 200 Mpc
- Technology research going on now
- Prototype work beginning
- Begin installation 2006+
- Begin taking data 2008+

Advanced LIGO Improvements

- Seismic isolation to 10 Hz
- Sapphire optics for lower thermal noise
- Silica ribbon suspensions

Higher laser power 180 W
Signal recycling mirror

Advanced LIGO Research

- Seismic isolation testing
- Laser development
- Silica ribbon suspensions
- Sapphire properties
 - Thermal noise
 - Optical absorption

Prototypes

- 40 m interferometer
- Thermal noise interferometer
- LASTI

Advanced LIGO Sensitivity

Signal recycling mirror allows tuning for particular sources

Gravitational wave detection Current status

- Completing commissioning of initial LIGO
- ~ 10⁴ improvement needed in noise
- Plans developing for data analysis
 - Science runs
 - Upper limits with engineering data
- Advanced LIGO R&D progressing
 - Laboratory experiments with technology
 - Prototype development

Gravitational wave detection Future plans

- Science run with initial LIGO summer 2002 ?
- Install advanced LIGO ~ 2006
- DETECT GRAVITATIONAL WAVES !!!
 - Possible with initial LIGO
 - Likely with advanced LIGO
- Further upgrades to LIGO cryoLIGO 2012?
- Space-based interferometers LISA

