Assessing Thermal Noise From Optical Coatings

Gregory Harry Massachusetts Institute of Technology – Suspensions and Thermal Noise Working Group –

> March 20–23, 2002 LSC Meeting – Livingston, LA

Context

- Previously measured coating loss:
 - SiO₂/Ta₂O₅ on silica substrate ϕ =1.0 ± 0.3 10⁻⁴
 - AL₂O₃/Ta₂O₅ on silica substrate ϕ =6.4 ± 0.6 10⁻⁵
- FEA code to compute energy in coating
- Implications for advanced LIGO
 - silica mirrors BNS range $115 \text{ Mpc} \rightarrow 80 \text{ Mpc}$
 - sapphire mirrors $\,$ BNS range $\,$ 185 Mpc \rightarrow 110 Mpc $\,$

LIGO-G020039-00-R See DRM Crooks et al, <u>CQG</u> 19, 5(2002) 883; GM Harry et al, CQG 19, 5(2002) 897. 2

LIGO

Measurement

- Thin fused silica samples (3 inch diameter by 0.1 inch thick)
- Samples suspended from monolithic, double-bob suspensions (see Steve Penn's presentation)
- Q of normal modes measured before and after coating
 - two butterfly modes (n=0, l=2)
 - single drumhead (n=1, l=0)

• Birefringence sensor used to readout oscillating strain in normal mode

- Data fit to full damped sinusoid to get Q
- FEA results used to determine energy in coating for each mode
- ϕ_{coat} deduced from Q's and FEA

LIGO Finite Element Analysis (FEA)

- Make Algor model of samples
 - $f_{butterfly} = 2659Hz$
 - fdrumhead = 4038 Hz
- Use Ocean to get energy ratio in coating (for 8 μm coating)
 - butterfly 1.19×10^{-2}
 - drumhead 1.26×10^{-2}

Analyses

- Determine if loss due to factor other than coating
 - uncoated sample annealed
- Determine if loss scales with coating thickness or with number of layers
 - 2 layers, $\lambda/4$ SiO₂ and $\lambda/4$ Ta₂O₅
 - 30 layers, λ /4 SiO_2 and λ /4 Ta_2O_5
 - 60 layers, λ /8 SiO₂ and λ /8 Ta₂O₅
- Determine if SiO₂ or Ta₂O₅ is lossier
 - 30 layers, λ /8 SiO_2 and 3 λ /8 Ta_2O_5

Annealing Results

Sample annealed at 900° C

Mode	Annealing	Frequency	Q
Butterfly 1	Unannealed	2720	11 million
	Annealed	2717	42 million
Butterfly 2	Unannealed	2720	14 million
	Annealed	2718	54 million

Sample annealed at 600° C

Mode	Annealing	Frequency	Q
Butterfly 1	Unannealed	2779	15 million
	Annealed		
Butterfly 2	Unannealed	2781	12 million
	Annealed	2781	44 million

_IGO-G020039-00-R

Coating Results – 2 layers

Samples coated with 2 layers of λ /4 SiO₂ and λ /4 Ta₂O₅

Mode	Frequency	Q
Butterfly +	2679	5.4 million
Butterfly x	2681	6.5 million

Mode	Frequency	Q
Butterfly 1	2711	8 million
Butterfly 2	2722	9 million

Coating Results – 30 layers even

Samples coated with 30 layers of λ /4 SiO₂ and λ /4 Ta₂O₅

Mode	Frequency	Q
Butterfly +	2708	528,000
Butterfly x	2840	1.9 million

Mode	Frequency	Q
Butterfly 1	2732	536,000
Butterfly 2	2735	549,000

Coating Results – 30 layers uneven

Samples coated with 30 layers of λ /8 SiO₂ and 3 λ /8 Ta₂O₅

Mode	Frequency	Q
Butterfly 1	2721	400,000
Butterfly 2	2723	403,000
Drumhead	4107	285,000

Mode	Frequency	Q
Butterfly 1	2700	409,000
Butterfly 2	2694	404,000

Coating Results – 60 layers

Samples coated with 60 layers of λ /8 SiO₂ and λ /8 Ta₂O₅

Mode	Frequency	Q
Butterfly +	2712	548,000
Butterfly x	2690	487,000
Drumhead	4057	439,000

Mode	Frequency	Q
Butterfly +	2786	502,000
Butterfly x	2782	520,000

Coating **\phi's**

Distributions of Loss Angle

Interpretation

- Annealing can reduce silica loss, even for thin samples
- $\phi_{coat} = 1.7 \pm 0.2 \times 10^{-4}$
- Loss scales with coating thickness
- No significant effect from first or subsequent layers
- Ta₂O₅ is lossier than SiO₂
- $\phi Ta_2O_5 = 2.7 \pm 0.7 \times 10^{-4}$
- ϕ SiO₂ = 4.2 ± 4.4 x 10⁻⁴

Next Steps

- Anneal current coated samples
 - limited maximum temperature due to Ta₂O₅
 - adjust cooling rate
- Try other materials and combinations

 SiO₂ /Al₂O₃ (need ~80 layers to get HR)
 Nb₂O₅ , HfO₂ , ZrO₂ (optically lossy)
- Changes to coating process
 - adjust purity of target materials
 - change substrate temperature
 - change ion beam energy

LIGO Predicting Thermal Noise from Coating ϕ

$$\phi_{\text{readout}} = \phi_{\text{bulk}} + \frac{1}{\sqrt{\pi}} \frac{(1 - \sigma_{\text{sub}})}{(1 - 2\sigma_{\text{sub}})} \frac{d}{w} \left(\frac{Y_{\text{coat}}}{Y_{\text{sub}}} \phi_{\text{coat}} \| + \frac{Y_{\text{ub}}}{Y_{\text{coat}}} \phi_{\text{coat}}\right)$$

Still needed ...

- - more complete accounting for coating anisotropy (could have similar problem/solution in sapphire)
 - accounting for finite size of mirrors

LIGO Implications for Advanced LIGO

sapphire mirrors

fused silica mirrors

• Comparison of $\phi_{coat} = 1 \times 10^{-4}$ and $\phi_{coat} = 4 \times 10^{-4}$

• 5.5 cm beam spot, 30 kg masses

_IGO-G020039-00-R

Goals

- How large can \$\u03c8_{coat}\$ be without affecting the astronomical reach of advanced LIGO?
- Choose reduction of 5 Mpc for BNS as limit
- Fused silica mirrors Sapphire mirrors \$\overline{\overline{coat}} < 3 \times 10^{-5}\$ \$\overline{\overline{coat}} < 1 \times 10^{-5}\$
 - How realistic is this? (*while maintaining low optical loss*)