

An Overview of LIGO Length Sensing and Control

Peter Shawhan (LIGO Lab / Caltech)

LSC Meeting March 20, 2002

Thanks to Rana Adhikari and Luca Matone for helping me understand this stuff

LIGO-G020064-00-D

Length Sensing

Interferometer response to an externally-induced mirror displacement *X*, neglecting servo feedback

Neglecting: anti-alias filter; whitening filter pair

Fabry-Perot cavity introduces frequency dependence

 $\frac{\mathsf{AS}_\mathsf{Q}}{X} = \frac{C_o}{1+i(f/f_c)} \equiv C(f) \quad \text{(units: AS}_\mathsf{Q} \text{ counts per meter)}$

Cavity pole frequency f_c depends on cavity length & finesse

Nominally 180 Hz for 2km, 90 Hz for 4km

Determine C_o by shaking mirror and measuring AS_Q signal

LSC Meeting, March 20, 2002

G

Effect of Servo Feedback

Loop gain modifies transfer function

AS_Q	_	C
X	_	1 - G A C

Loop gain is >>1 at low frequencies, <<1 at high frequencies

Unity gain frequency is within LIGO's sensitive band \rightarrow Servo has substantial effect on response function for astrophys. analyses

LSC Meeting, March 20, 2002

LIGO

Peter Shawhan (LIGO/Caltech)

LIGO-G020064-00-D

Servo Gain G(f)

Overall servo gain is the product of several operations

Input and output matrices are frequency-independent Filters are digital → completely deterministic

Aside: AS_Q and DARM_CTRL are coherent, except for small (?) "off-diagonal" terms in input matrix

G(f) has a rather complicated frequency dependence

Can be described as a set of poles and zeros

Can either model *G*(*f*) **or measure it empirically** (see later)

Actuation Transfer Function A(f)

Neglecting: dewhitening filter pair; analog filtering in coil driver

Relates an electronic signal to absolute mirror displacement

Pendulum response introduces frequency dependence

$$A(f) = \frac{A_o}{1 - (f/f_p)^2 + i(f/f_p)/Q} \approx \frac{-A_o f_p^2}{f^2}$$

~ 0.75 Hz, Q ~ 10

Determine A_o by moving a mirror with the servo disabled and observing interference fringes

LSC Meeting, March 20, 2002

 f_p

LIGO

Peter Shawhan (LIGO/Caltech)

Response of AS_Q to a Calibration Excitation

To get the response function to an externally-induced displacement, just divide by A(f)

A swept-sine excitation traces out the full transfer function

LSC Meeting, March 20, 2002

LIGO

Peter Shawhan (LIGO/Caltech)

There are some other complications

Filters neglected in this discussion need to be characterized/modeled Response may include an absolute time delay

Response function can be represented as poles & zeros

Mathematically true as long as *G*, *A*, & *C* have pole/zero representations Some of these will be complex-valued, in general

A swept-sine calibration yields a frequency series; have to fit this (with some choice of functional form) to get a pole/zero representation

The amplitude and phase of the response to a gravitational wave have nontrivial frequency dependence

Even without the servo, the cavity pole introduces frequency dependence

The servo has a significant effect on the response function, but it can be modeled or simply measured with a swept-sine

The actuation transfer function has an absolute scale factor which needs to be measured

The calibration procedure has become better understood since the E7 run

Techniques for determining A_o

Understanding / modeling G(f)

Techniques for fitting swept-sine data