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Go Adaptive Compensation of Thermal
Lensing in Advanced LIGO Core Optics

* Thermal distortions expected to limit AdLIGO
QO Thermal lens aspherical; refocusing, curvature ‘preload’ not adequate
Q Cold-start ‘bootstrap’ problem

O Strong possibility of spatially inhomogeneous absorption in Al,O4
» Test mass & coating improvements not guaranteed adequate

« Real-time not especially difficult w/current technology

- Scanning “Phase Camera” (Adhikari, MIT)

- Staring “Bullseye WFS” (Mueller, UF)

- Hartmann & Schack-Hartmann methods (Veitch & McLelland, ACIGA)
 Actuation tricky; can’t “touch” anything (no PZT mirrors, etc.)
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Thermal Actuation

Thermal actuation on core optics (Lawrence, MIT)
- Noncontact actuators with low spurious phase noise potential

- Time constants & spatial scales matched to disturbances

Radiative ring heater (“Toaster”)

- Simple nichrome ring near optic, aided by passive low-emissivity shield
- Purely axisymmetric, but efficient and low potential for spurious noise

Directed beam heating (“Star Wars”)

- Can deal with (nearly) arbitrary error function (e.g., absorption ‘hot spots’)
- Potential for noise if directed at main cavity optics

- Not efficient for first-order effect (simple lensing)

USE BOTH on TRANSMISSIVE OPTICS (not cavity mirrors)
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Proposed Implementation: Corrector
Plates w/ Dual Actuators

A ALO; ITM
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FEA model w/correction: ring heater +
cylindrical radiation shield

5 R=20.3cm,H=30cm,H_ . =0.95P. =1.42 W/cm
x 10 r r shield ring
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ATC Experiment
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Go OPD vs.t, ring heater w/SiO, test optic

Relative Optical Path Distortion vs. Time at R=2 cm
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Tallored Beam Heating Progress

 Tailored beam actuation (RCL & undergrads)

O FEA of actuation “kernel” (R. Bennett
thesis), showed edge effects negligible

O Developed actuation basis & generated
“arbitrary” Zernike distortions (P. Marfuta
thesis); found hard to control net lens
(‘power’) with finite heat

O Efficient “spiral” scan pattern (minimum
move/settle time for galvos)

O Inversion (distortion map --> heat map)

converges well if outer periphery is
lumped into single zone
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Other Progress

* Interferometer modeling (RCL)

O Applied Melody to case of 150W in LIGO | with SV glass ; thermal
compensation makes it work! (Lico-P010023)

¢ Added angled optics (e.g., beamsplitters) to Melody (Lico-T020001)

¢ Added anisotropic material (e.g., sapphire) capability to Melody (Lico-T020001)
« Sensing & interpretation (SH sensors are deceptive!)

¢ Imaging of optic at SH CCD plane is critical (test target & second CCD)

O Edge diffraction causes bias (throw away periphery, use big optics)

O Don't trust “wavefront reconstruction” algorithm; use raw gradients

O Calibrate magnification using tilted mirror for pure shear

« Still need measurements of absorption inhomogeneity
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Thermophysical Constants

« Radial OPD gradient vs. time in “impulse response” (space &
time) will project ki, and a independently

* Prior attempts to also include dn/dT were not so easy

* Results sensitive to systematics from SH sensors, “wavefront
reconstruction” errors

* Now have anisotropic formalism for influence kernel, use only
wavefront gradients

» Waiting for “good” C-axis sapphire, but initial silica test looks
consistent with model
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Future Track

« Now: Second pass at sapphire ki, o

 Next: Retest toaster, beam actuators on silica
Q Significantly enhanced models

Q Better control of systematics in SH sensing

¢ With more IFO performance modeling -> RCL Ph.D. thesis
 Transitioning work to other team members

O Dave Ottaway + student + part-time optomech engineer
« 4Q’'02: deliver “toaster” design to Gingin
« 2Q’03: deliver prototype dual-actuator system to Gingin
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