

Astrophysics from stochastic background

The University of Texas at Brownsville March 22, 2002

N

LIGO:

- Expect to set upper limits.
- Detect $\Omega_{gw} \sim 10^{-6}$ with LIGO-I, $\Omega_{gw} \sim 10^{-9}$ with LIGO-II.
- If detect, study isotropy/anisotropy:
 - If anisotropic, probably galactic and due to exotic sources.
 - If isotropic, not sure if due to cosmological population of astrophysical sources or primordial sources. Need to study $\Omega_{gw}(f)$.
- $\Omega_{gw}(f)$ gives info about number density and dE/df.

LISA:

- Expect detections.
- Galactic WD-WD binaries should dominate at low freqs: $\Omega_{gw} \sim 10^{-11}$.
- Study anisotropy to determine distribution of sources on sky.
- If isotropic, not sure if due to a cosmological population of astrophysical sources or primordial sources.
- Primordial background masked by astrophysical background.

What we need from source analysts:

- $\Omega_{gw}(f)$ from number density, dE/df, and formation/event rate as function of z.
- Relation between different $\Omega_{gw}(f)$ and model parameters.
- How do upper limits constrain astrophysical or exotic physics models?

