Triggered Search for Gravitational Waves

J.D. Romano

The University of Texas at Brownsville
March 22, 2002
LIGO-G020102-00-Z

Example: Detecting GW bursts associated with GRBs

Some problems:

- 1. Due to uncertainties in GRB progenitors and the violent nature of the event, GWBs waveform will not be known a priori.
- 2. Since GRBs are cosmological, the SNR of a single GWB will be too small for a high confidence detection.

However:

- 1. If GRBs are accompanied by GWBs, the correlated output of two GW detectors at the time of the GRBs (on-source) will differ from the correlated output at other times (off-source).
- 2. A statistically significant difference between on- and offsource correlations supports a GWB/GRB association and represents a detection of the GWB.
- 3. Can test for this difference using Student's t-test (which does not require knowledge of the GWB waveform, source distribution, or detailed knowledge of the detector noise).

Student's t-test

"Do two distributions, Y_{on} and Y_{off} , whose variances are equal, have the same mean?"

$$t = \frac{\overline{Y_{\text{on}}} - \overline{Y_{\text{off}}}}{s_D}$$

where

$$\overline{Y_{\text{on}}} = \frac{1}{N} \sum_{i=1}^{N} Y_{\text{on}i}$$
 is sample mean of Y_{on}

$$\overline{Y_{\rm off}} = \frac{1}{N} \sum_{i=1}^{N} Y_{\rm off}{}_i$$
 is the sample mean of $Y_{\rm off}$

$$s_D = \sqrt{rac{s_{
m on}^2}{N} + rac{s_{
m off}^2}{N}}$$
 is the standard error

$$s_{\rm on}^2=\frac{1}{N-1}\sum_{i=1}^N(Y_{\rm on}_i-\overline{Y_{\rm on}})^2$$
 is the sample variance of $Y_{\rm on}$

$$s_{\rm off}^2=\frac{1}{N-1}\sum_{i=1}^N(Y_{\rm off}_i-\overline{Y_{\rm off}})^2$$
 is the sample variance of $Y_{\rm off}$

Cross-correlation statistic:

$$Y = \int_0^T dt \int_0^T dt' \ x_1(t_1^{\gamma} - t) \ Q(|t - t'|) \ x_2(t_2^{\gamma} - t')$$

T is the time interval between start of GWB and arrival of GRB.

Student's t-test (cont.)

- 1. Pose the null hypothesis H_0 : $p_{on}(Y) = p_{off}(Y)$.
- 2. Determine t_0 for which, when H_0 is true, $t > t_0$ in less than e.g., 1% of all observations.

- 3. The test:
 - (a) If $t > t_0$, reject null hypothesis and conclude we detected a GWB/GRB association with significance 99%.
 - (b) If $t \le t_0$, accept null hypothesis and conclude the data is consistent with no GWB/GRB association.

Upper limit on SNR of GWBs associated with GRBs

	N = 10	N = 100	N = 500	N = 1000
90%	0.595	0.182	0.0811	0.0573
95%	0.775	0.234	0.104	0.0736
99%	1.14	0.332	0.147	0.104
99.99%	2.08	0.536	0.236	0.167