Merger phase simulations of binarysystems: status

- Waveforms - today
- BH-BH
- BH-NS
- NS-NS
- Main difficulties/unknowns
- Outlook (for some of the problems)
- Computational/analytical sides


## Waveforms...



## Binary Simulations: Key issues

- Formulation and discretization of equations of motion
- Singularity and/ or fluid handling
- Coordinates?
- Computational demands
- Tie-in to observations (gravitational wave extraction...we're working with a deadline!)
- Turn-around time for tests too long!
- Shortage of personnel
- (5 candidates for ~15 PD jobs!)



## Eqns: 3+1 approach



$$
\begin{aligned}
& \partial_{t}^{2} g_{i j}=g^{k l} \partial_{k l}^{2} g_{i j}+F(S) \\
& C_{a}(g)=0 \\
& S=\left\{\alpha, \beta^{i}, g_{k l}, \operatorname{derivs}(S)\right\}
\end{aligned}
$$

- Several Flavors: ADM; BSSN; EC, ...
- ADM: Geometrical: ‘oldest'...
- BSSN: ‘gauge’ separating: very popular, close to ADM
- Hyperbolic: well posedness and cleaner boundary treament
- Coordinate conditions defined by $\alpha, \beta^{i}$
- ID needs to satisfy constraints.

$$
\begin{aligned}
R+K^{2}-K_{i j} K^{i j} & =0 \\
D^{j}\left(K_{i j}-g_{i j} K\right) & =0
\end{aligned}
$$

## Singularity handling

- ‘singularity excision’



## Coordinates?

- 'mere' labels. Can be chosen arbitrarily
- Affect metric form

$$
\begin{aligned}
& d s^{2}=-d t^{2}+d x^{2}+d y^{2} \\
& d s^{2}=-d t^{2}+d r^{2}+r^{2} d \theta^{2}
\end{aligned}
$$

Flat spacetime!, just in different coordinates: Cartesian, cylindrical

- 'co-moving' coordinates considerably simplify the description
- Generally requires 'knowledge' of dynamics
- Avoid 'coordinate singularities' (eg. same point with different coordinate labels)
- Require compatibility with ‘singularity excision'


## Cost of 'typical simulation'...

- RHS' $\sim 10^{3}$ ops
- Vars $\sim 10^{1-} 10^{2}$
- Resolution per wavelength 20 pts ( $\varepsilon \sim 10 \%$ ); 64 pts ( $\varepsilon \sim 1 \%$ )
— $\Delta x \sim M / 6$
- Evol time $\sim 10^{3} \mathrm{M}$
- Boundaries? 'as far as possible’ [System in a Box!...*approximation* to the 'target system']
- Cost for $\mathrm{T}=10^{3} \mathrm{M}, \mathrm{OB}=50 \mathrm{M} \sim 10^{17}$ Flops!!!
- (Note: cheaper for spectral methods iif smooth enough solutions!)
- Note:
- Twice the resolution?. Multiply by 16
- Move boundaries $10 \times$ farther ? Multiply by 10^3!


## BH-BH (2000 UT-Piturpu /AE)

- Preliminary (quite naïve) binary black hole runs

- The good: Can handle $2 \mathrm{BH} \rightarrow \mathrm{BH}$
- The bad \& the ugly: Still lots of problems.
- Stability ( 2BH T<30M || 1BH T<100M);
- Equations; coordinates; accuracy; boundaries LIGO-G020166-00-Z


## Regroup \& revise

- Simplified problems:
- 3D single (slightly perturbed) black holes [AEI,PSU, Cornell, UT,UIUC...]
- 2D greatly perturbed bh's [UBC,Liu-byu]
- Worrying about outer boundary issues!
- 'outgoing wave’ conditions [UIUC, AEI, WashU, PSU, UBC...]
- Constraint enforcing boundary conditions [Pitt,LSU,Cornell-Caltech]
- Compactification [UBC,Oakland]
- Coordinate issues
- Pressing on singularity 'freezing' coordinates * [AEI...]
- black hole excision issues
- Simpler if *
- Dealing with moving boundaries
- 3D a few points for $\sim 40 \mathrm{M}$ [PSU,UT...]
- 2D hundreds of points 'forever' [UBC]

LIGO-G020166-00-Z

- Stability?
- Formulation suitability
- Hyperbolic formulations [Cornell-Caltech,LSU,UT...]
- Influence of non-principal part of the equations [LSUUBC,Caltech,...]
- Modifying rhs's with constraints [ubc,PSu,Uiuc,Ael...]
- Numerical algorithms
- Wave-equation based not necessarily good! [LSU,...]
- Dissipation needed [Ubc,LSU]
- Special handling at excision bdries [Ael,Uiuc,...]
- Resolution!
- AMR [UBC,NASA,WashU...]

Note: these issues are all intertwined!

## NS-NS

- Freq. too high for LIGO...
- but can help to put error bars on perturbative methods
- Simulations of merging NS on their way
- Able to follow for a few orbits [Japan-UIUC,WashU]
- Fluid treatment with: (a) artificial dissipation, (b) high resolution shock handling schemes
- Rough waveforms obtained.
- Much larger parameter space!
- eqn of state
- Good eqns of state?
- Are the results robust for different ones?


## BH-NS

- Not as agressively pursued
- But combination of NS-NS \& BH-BH simulations should make this straightforward
- Alternative: use 'characteristic' formulation [Pitt-UBC-UNISA]


- Restricted parameter space, but single bh's evolved forever.

- Need to address significantly different computational issues
- Targeting BH-NS and SMBH-compact object systems


## $\operatorname{Density}(\mathrm{r}, \mathrm{q}=$ const, p$)$

©

$$
t=0.1
$$



## Today: hopeful signs!

- Past 2 years
- 3D single black hole evolutions pushed by 1-2 orders of magnitude in the past 2 years!
- 3D binary black holes pushed to $\sim 100 \mathrm{M}$ 's
- 2D simulations (basically) stable (unlimited evolutions)
- A few orbits of NS-NS systems.


- Better understanding of :
- Formulations, influence of non-linear terms (mathematical knowledge limited)
- Boundary conditions
- Moving boundaries

- Computers getting more powerful, and learning how to get the 'most' out of them.
- Cactus, Paramesh, Kelp, etc.etc


## Missing links (practically)...

- 'realistic' initial data
- PN,
- Quasi-equilibrium,
- IBBH
$\rightarrow$ Right 'metric' information seed for elliptic ID solvers.
Inner boundaries?
- Post-merger treatment
- CLAP, Lazarus, direct match to QNM (need good parameter estimation of final object, isolated horizons?)
- Can even be used to 'cheat' the crash


Baker, Bruegmann, Campanelli, Lousto

## More missing links...

- Resolution
- Adaptive/fixed mesh refinement

- Needs to work on:
- What's the 'acceptable' error for data analysis? [25\% total??]
- What's the expected configuration sample? (need feed-back from simulations LIGO-GO20166-0 -


## Pushing Further?

- lots of activities!
- Mexican workshop (06/02)
- Caltech waveform simulations workshop (06/02-06/03 ? 04)
- Cargese school (07/02)
- ITP compact object simulations (05-07/03)
- Computational power...



## Qn: 'when do you expect waveforms'

- Answers:
- 2 yrs
- 5 yrs
- take the 5th
- Are you nuts?!
"whoever burned his tongue with milk, will cry at the sight of a cow...."
- Detection info (we could all get away with murder ...)
- GW analysis info (significant new challenges ahead for all!)

