

Advanced LIGO Input Optics Design Requirements Review

Presentation Outline

• Design Requirements

- » Introduction, Production Functions (Dave R., 5 minutes)
- » Design Requirements (Guido*, 55 minutes)

Conceptual Design

- » Introduction, Layout (David T., 10 minutes)
- » RF Modulation (Guido, 10 minutes)
- » Active Jitter Suppression (Guido, 10 minutes)
- » Mode Cleaner (David T., 10 minutes)
- » Faraday Isolation (Dave R., 10 minutes)
- » Mode Matching (Dave R., 10 minutes)

Input Optics Product Functions

- RF modulation
- Input mode cleaning
- Additional active jitter suppression before interferometer
- Laser power control to the interferometer
- Mode matching (interferometer and mode cleaner)
- Optical isolation and distribution of sensing beams for other subsystems
- internal diagnostics

IO Schematic

LIGO-G020229-00-D

LIGO R&D

Not Included in IO

- Output (AS port) mode cleaner (AOS)
- Modulation drive (ISC)
- Suspension design for IO mirrors (SUS)
 - » Suspension fabrication for large MMT
- MC length and alignment sensing and control (ISC)
 - » should be active participation in design by IO group member
- Electronics (CDS)
 - » MC
 - » active jitter suppression

Advanced LIGO

Primary Requirements from Adv. LIGO Systems Design:

- Frequency Noise at IFO, MC, and PSL
- Intensity Noise at IFO

Additional Primary Requirements calculated for

- P = 125W
- Sapphire mirrors
- \bullet 40ppm \pm 50% losses on reflection
- 1% difference in Arm Cavity Intensities.
- DC- and RF-Sensing

Include always safety factor of 10!

MODELLING BEAM JITTER

• Input Field:
$$\begin{pmatrix} 0\\1 \end{pmatrix} \stackrel{}{=} \frac{TEM_{00}}{TEM_{10}}$$

• Propagation: $\begin{pmatrix} e^{i\varphi_0} & 0\\ 0 & e^{i(\varphi_0+\varphi_G)} \end{pmatrix}$, $\varphi_0 = \omega 2\pi \frac{L}{c}$, $\varphi_G =$ Gouy-phase
• Reflection: $\begin{pmatrix} \sqrt{1-4\Gamma^2} & -2i\Gamma\\ -2i\Gamma & \sqrt{1-4\Gamma^2} \end{pmatrix}$, $\Gamma = \Theta \frac{2\pi w}{\lambda}$

- Build full IFO with these matrices
- Output: Dark Port Field: $E_{out} = \begin{pmatrix} a \\ b \end{pmatrix}$
- Beat only TEM_{00} -component *a* with LO

(Output MC)

• Repeat for Jitter SB around RF-SB.

Compare with GW-Signal \Rightarrow **Requirements**

BEAM JITTER

Beam Jitter requirement depend on Mirror Tilt:

 $\Delta \Theta_{ITM} = \Theta_{ITM1} - \Theta_{ITM2}$

DC-Sensing:

$$a_{10}^{max}(f) = \sqrt{\left(\frac{2.5 \cdot 10^{-5}}{f^2}\right)^2 + (5 \cdot 10^{-10})\frac{\left[2 \cdot 10^{-8} rad\right]}{\Delta \Theta_{ITM}} \frac{1}{\sqrt{Hz}}}$$

RF-Sensing:

$$a_{10}^{max}(f) = \sqrt{\left(\frac{4.5 \cdot 10^{-5}}{f^2}\right)^2 + (5.5 \cdot 10^{-10})} \frac{[2 \cdot 10^{-8} rad]}{\Delta \Theta_{ITM}} \frac{1}{\sqrt{Hz}}$$

RF-MODULATION

Two possible noise sources:

- Changes in the SB-amplitude
 - \Rightarrow Change Carrier Intensity
 - \Rightarrow Creates Radiation Pressure Noise
- Oscillator Phase Noise
 - \Rightarrow changes phase of LO at dark port
 - \Rightarrow scales with carrier amplitude

RF-MODULATION

Changes in SB-Amplitude

DC-Sensing:

 $\delta m(f) < \frac{10^{-9}}{m_0\sqrt{Hz}} \frac{f}{[10Hz]}$

RF-locking:

 $\delta m(f) < \frac{10^{-9}}{m_0 \sqrt{Hz}} \frac{f}{[10Hz]}$ f < 100Hz

$$\delta m(f) < \frac{10^{-8}}{m_0\sqrt{Hz}} \qquad f > 100Hz$$

OSCILLATOR PHASE NOISE

$$E = E_0 e^{i\omega_c t} exp\left(im\cos\left[\Omega t + \frac{\delta v}{2\pi f}\sin(2\pi f t)\right]\right)$$

Detuned Interferometer:

- both RF-sidebands different amplitude and phase
- all noise sidebands different amplitude and phase

Two contributions:

- OPN-Sidebands beat with Carrier on PD.
- Oscillator Phase Noise in LO at mixer.

No Noise Cancellation anymore !

RF-MODULATION

Requirements for 180 MHz:

- $I_{SSB}(10Hz) < -92 \text{ dBc/Hz}$
- $I_{SSB}(100Hz) < -140 \text{ dBc/Hz}$
- $I_{SSB}(1 kHz) < -163 dBc/Hz$ Critical Parameters:
- Detuning in arm cavities and MI

 $\Phi_- < 10^{-7}$ rad $\phi_- < 10^{-4}$ rad

• Differential Losses in arm cavities

 $\Delta L < 15 \ ppm$

Reason: Scales with Amplitude of Carrier at DP.

SECONDARY REQUIREMENTS

• passive suppression: mode cleaner (1000)

active suppression necessary

Puts Requirements on Mode Cleaner:

• Angular Alignment (below GW-band): Beam Jitter creates frequency noise:

 $\Theta_{MC} < 10^{-7}$ rad

• Angular Stability (in GW-band): MC mirror motion creates Beam Jitter:

$$\Theta_i(f) < \sqrt{\left(\frac{2.5 \cdot 10^{-12}}{f^2}\right)^2 + (5 \cdot 10^{-15})^2 \frac{[2 \cdot 10^{-8}]}{\Delta \Theta_{ITM}} \frac{1}{\sqrt{Hz}}}$$

Beam Jitter:

ADDITIONAL REQUIREMENTS

• Frequency Noise Requirement behind MC limited by radiation pressure noise

$$\Rightarrow 3 \cdot 10^{-2} \frac{Hz}{\sqrt{Hz}} \frac{Hz}{f} \qquad f < 1 \ kHz$$
$$\Rightarrow 3 \cdot 10^{-5} \frac{Hz}{\sqrt{Hz}} \qquad f > 1 \ kHz$$

- Oscillator Phase Noise and SB-Amplitude couple if FSR \neq RF-frequency
 - \Rightarrow Difference between FSR & RF-frequency < 14Hz
 - \Rightarrow Otherwise Requirements start to change

MODE MATCHING

Mode Matching Telescope:

- Two Mirrors
- Required Efficiency 95%
- Adjustable to accomodate small core optics deviations

Angular Requirements:

- $\Delta \Theta_{MMT} < 6 \cdot 10^{-9}$ rad (rms)
- $\delta \Theta_{MMT} < 10^{-12}/\sqrt{ extsf{Hz}}$

General Design

IO System Layout

- Optics not in vacuum are mounted on the same table as the PSL in a clean, enclosed, and acoustically/seismically stable environment.
- Conceptual Layout of IO Components on the PSL Table:

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

Possible Methods for Minimizing Frequency Noise from Acoustic Coupling to Mirror Mounts and Periscopes

• LIGO 1 suffered from coupling of acoustic noise in the PSL/IOO table environment to mirror mounts.

1) enclose PSL components in separate vacuum (with suitable vibration isolation).

2) provide low-acoustic (anechoic) enclosure around PSL with all noise producing devices (fans, etc) outside this enclosure.

• PSL/IOO table of L1 was not stiff enough to constrain the (heavy) periscope frame first employed; eventually a lighter design was used.

1) move periscope into vacuum system (requires a HAM viewport at table level).

2) raise table to eliminate periscope.

• Both treatments are outside the scope of the IOO subsystem alone.

In-vacuum optics

- With the exception of the Faraday isolator, all main IFO beam optics including and following the mode cleaner will be suspended.
- Diagnostic beam optics for IFO and MC control will be located on fixed mounts.
- Output ports in the HAMs used as optical feedthroughs for sensing beams.

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

Dimensional Constraints

- IO system located on PSL table. HAMs 1, 2, and 3. HAM 3 also holds the power recycling mirror.
- Dimensions:

Item	Unit	Value
PSL table area dimensions	ft x ft	16 x 5
HAM1(7) - HAM2(8) spacing (center-center)	m	13.72
HAM2(8) - HAM3(9) spacing (center-center)	m	2.63
HAM1(7) stack area dimensions (L x W)	m x m	1.90 <i>x</i> 1.70 (TBR)
HAM2(8) stack area dimensions (L x W)	m x m	1.90 <i>x</i> 1.70 (TBR)
HAM3(9) stack area dimensions (L x W)	m x m	1.90 <i>x</i> 1.70 (TBR)
HAM1,2 (7,8) Connecting Beam Tube Diameter	m	1.2*

* HAM1,2 and HAM 7,8 beam tube to be replaced

Dimensional Constraints, cont.

Δz (HAM1-HAM2, local coordinates, LHO)	mm	8.49 [†]
Δz (HAM2-HAM3, local coordinates, LHO)	mm	1.59^{\dagger}
Δz (HAM7-HAM8, local coordinates, LHO)	mm	-8.49 [†]
Δz (HAM8-HAM9, local coordinates, LHO)	mm	-1.59 [†]
Δz (HAM1-HAM2, local coordinates, LLO)	mm	4.28 [†]
Δz (HAM2-HAM3, local coordinates, LLO)	mm	0.80^{+}

[†] The LHO *x*-axis slopes downward by 0.619 mrad; the *y*-axis slopes upward by 0.012 mrad. WHAM1 (7) is 8.5 mm higher (lower) than WHAM2 (8). At LLO the *x*-axis slopes downward by 0.312 mrad and the *y*-axis slopes downward by 0.612 mrad. LHAM1 is 4.3 mm higher than LHAM2.

- Suspensions must either be raised on platform or have adjustment capability so that the plane of the MC beam is level
- Capability for optical levers on all suspended mirrors required.

Overall IO Efficiency

- Requirement: IO must deliver 76% of the PSL TEM₀₀ light to the IFO
- Includes all losses from reflection, transmission, and absorption in the IO optical components, as well as light lost into uncompensated higher order modes through thermal lensing.
- Transmission of the components of the IO components:
 - Suspended components assumed to have coatings similar those achieved in the LIGO I (~50 ppm loss)
 - Other optics assumed to have antireflection coatings that match the standard commercial narrowband multilayer coatings (0.1%).
 - Out-of-vacuum optics assumed to have 200 ppm scatter.
 - Loss of TEM₀₀ mode in the RF modulators and Faraday isolator are based on conservative estimates of passive thermal lensing compensation using – *dn/dT* values for FK51 Schott glass.

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATO

ltem	Loss	TEM ₀₀ Mode Loss	TEM ₀₀ Transmittance	Integrated Transmittance
RF mod./lenses	0.035	0.04^{1}	0.925	0.925
PSL mirrors (2)	0.002	0	0.998	0.923
MC mml (3)	0.002	0.0001	0.9979	0.921
HAM viewport	0.006	0.001	0.993	0.915
MC injection mirrors (3)	0.0006	0	0.9994	0.914
Mode cleaner	0.05^{2}	0.001	0.949	0.868
Faraday isolator	0.05	0.025^{3}	0.925	0.805
Steering mirror	0.033 ⁴	0	0.967	0.778
MMT 1	0.0002	0	0.9998	0.778
MMT 2	0.0002	0	0.9998	0.778
Mode Matching	0	0.015	0.985	0.763

¹ Based on preliminary measurements of thermal lensing in rubidium titanyl arsenate.
 ² Losses include mode mismatch and cavity visibility.
 ³ G. Mueller et al., *Classical and Quantum Gravity*, to appear, 05/2002.
 ⁴ Assumes 5 W needed for PSL intensity stabilization; TBD.

 \cap

MODULATION

Material: RTP (back up RTA)

Properties	RTA	RTP	LiNbO3
Laser Damage Threshold	400	600	280 ^b
[MW/cm ² , 10ns 1064nm]		coated	
<i>n_x</i> @ 1064nm	1.8	1.9 ^a	2.23
<i>n</i> _y @ 1064nm	1.8	1.9 ^a	2.23
<i>n_z</i> @ 1064nm	1.9	1.9 ^a	2.16
α ^c @ 1064 nm [1/cm]	50ppm	50ppm	≤ 0.5%
$r_{33}n_z^3$	273	272	306

• Half Wave Voltage within 10% of LiNbO₃

• Thermal Lensing very small

Temperature Changes change Modulation Index:

$$\delta T \approx \frac{33\mu \mathbf{K}}{\sqrt{\mathbf{Hz}}} \frac{1}{m^2} \frac{f}{[10\mathbf{Hz}]}$$

MODULATOR

Modulator Design:

- Material: RTP
- Temperatur stabilized
- Alignment very critical (active stabilized if necessary)
- Thermal Lensing very small (if needs compensation ⇒ FK51)

Oscillator Phase Noise: At the edge of state of the art Oscillators Very Critical !!

POINTING

Requirements:

- MC reduces pointing by factor 1000
- need active suppression (at least by 10..100)

Actuators:

- PZT-mounted mirrors
- RTP-prisms (will be studied)

Detection (under study):

- wave front sensing at MC or IFO
- Quad-Detector on HAM
- fixed spacer cavity on HAM

POINTING-ACTUATOR

Assume Laser Pointing of

 $a_{10}(f) \approx 2 \cdot 10^{-6} / \sqrt{Hz}$ f = 10 Hz..10 kHz

Requirements: • Actuator Range: $\delta\beta \approx 7 \cdot 10^{-10}$ rad

• Frequency Range: 10Hz..10kHz

Two Possible actuators:

- PZT-mounted mirrors:
 - a PZT on each side of the mirror
 - required length change $\approx 10 pm$
- **RTP-prism:** $\delta n \approx 10^{-8} \Rightarrow \delta V = 1V$

POINTING-DETECTION

Reference for Pointing:

- below GW-band: HAM-table is reference
- in GW-band: Mode Cleaner is reference

Detection of Pointing:

- below GW-band: Quad-Detector or fixed spacer cavity in front of MC
- in GW-band: Wave front sensing
 - below GW-band: aligns mode cleaner
 - above GW-band: suppresses pointing

POINTING-DETECTION

Concept:

- WFS @ MC
 - DC-10 Hz: align MC
 - > 10 Hz:
 - align beam using RTP
- WFS @ Fixed Spacer Cavity or Quad. Det.
 - DC-10 Hz: align beam using PZT

The suspended mode cleaner of the IO subsystem serves the following functions in stabilizing the laser light.

- In-band active frequency stabilization.
- Rejection of laser output not in the TEM₀₀ mode. (Beam Jitter suppression.)
- Passive intensity and frequency stabilization above the cavity pole frequency.

Mode Cleaner Physical Parameters

• For cold cavity (0 W) and hot cavity (165 W).

Definition	Unit	Cold	Hot
Mode Cleaner Length	m	16.681	
MC1 radius of curvature	m	>10000	-733
MC2 radius of curvature	m	26.900	27.92
MC3 radius of curvature	m	>10000	-733
MC1+MC3 Intensity Reflectivity		0.9985	
MC2 Intensity Reflectivity		0.99999	
g-factor MC1		1.0	1.023
g-factor MC2		0.3799	0.4025
g-factor MC3		1.0	1.023
Cavity g factor		0.3799	0.4212
Mirror absorption/scatter loss	ppm	50	

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

MC free spectral range	Hz	8986045	
MC finesse		2074	
MC waist	mm	2.102	2.114
Cavity Pole Frequency	Hz	4544	
Rayleigh range	m	13.06	13.99
Input Power	W	165	
Stored MC Power	kW	100	
MC mirror mass	kg	2.92	
MC mirror diameter	cm	15	
MC mirror thickness	cm	7.5	
Static Radiation pressure	N/m^2	0.00035	

LIGO-G020229-00-D

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

Physical Layout

- Triangular cavity
- Triple-pendulum suspensions
- Fused silica mirrors
- Changes from the LIGO I mode cleaner:
 - slightly increased length (Mirrors occupy HAMs 1 and 3)
 - larger mass mirrors (Mirrors have 12-fold increase in mass)

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

Frequency Noise

- Frequency stability is limited by technical radiation pressure noise over the entire frequency range.
- This stability and the allowed frequency noise of the field going into the main interferometer set the requirements on the frequency stabilization loop gains.
- Expected frequency noise (+ individual contributions to the MC frequency noise)

LIGO

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

Beam Jitter Stabilization

- The mode cleaner acts as a spatial filter, providing passive stabilization of timedependent higher-order spatial modes.
- Attenuation of higher-order modes (amplitude) for cold/hot cavity, assuming PSL jitter spec of 2 x $10^{\text{-6}}/\text{Hz}^{1/2}$

Index (n+m)	Ampl transm	Amplitude transmission		Suppression Factor		t Jitter
	Cold	Hot	Cold	Hot	Cold	Hot
1	0.00096	0.00100	1040	1004	1.92E-09	1.99E-09
2	0.00078	0.00077	1281	1304	1.56E-09	1.53E-09
3	0.00185	0.00146	540	687	3.70E-09	2.91E-09
4	0.00162	0.00243	616	412	3.25E-09	4.86E-09
5	0.00077	0.00082	1299	1222	1.54E-09	1.64E-09
6	0.00101	0.00085	986	1174	2.03E-09	1.70E-09
7	0.01190	0.00332	84	302	2.38E-08	6.63E-09
8	0.00092	0.00128	1089	782	1.84E-09	2.56E-09
9	0.00079	0.00076	1259	1317	1.59E-09	1.52E-09
10	0.00216	0.00108	462	927	4.33E-09	2.16E-09

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

11	0.00145	0.00875	689	114	2.90E-09	1.75E-08
12	0.00076	0.00093	1311	1075	1.53E-09	1.86E-09
13	0.00108	0.00078	928	1281	2.16E-09	1.56E-09
14	0.00596	0.00170	168	587	1.19E-08	3.41E-09
15	0.00088	0.00193	1135	519	1.76E-09	3.86E-09

LIGO-G020229-00-D

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

Thermal Distortion

• Absorption \rightarrow changes in effective radii of curvatures. Change of sagitta δs :

$$\delta s = \frac{\alpha}{4\pi\kappa} P_a$$

- α , thermal expansion coefficient; κ heat conductivity; and P_a absorbed power.
- Based on coating absorption coefficient of 1 ppm, fused silica mirror:

$$\delta s \approx 3nm$$

- Radii of flats -> -733 m; *R* of curved mirror changes from 26.9 m to 27.9 m
- Substrate acts as thermal lens for input and output beams:

$$\delta s = \frac{\partial n}{\partial T} \frac{P_a}{4\pi\kappa}$$

• Using (fused silica) 1 ppm/cm, effective sagitta change of transmitted beam is:

$$\delta s \approx 1 nm$$

• The induced focal length of about 1 km neither changes the beam quality nor affects the mode matching.

Alignment Procedure

- Use fixtures for installation of the suspended mirrors
- Fixed targets for initial beam alignment using the PSL laser (suspensions need to accommodate these).
- In-air and in-vacuum resonance measurements for fine beam alignment
- Measure free spectral range for final length adjustment.
- Will be tested at LASTI.

Mode Cleaner Mode Matching

• Baseline system resembles closely LIGO I three-lens configuration.

Faraday Isolator I

- Conventional FIs limited to ~20-30 dB isolation at high powers
 - » depolarization from thermo-elastic deformation
- Compensated crystal design approaches 45 dB isolation

Faraday Isolator II

• Location of FI between MC and PRM

- » isolates MC from IFO loss lock (rad pressure 'kick' to MC mirrors)
- » no need to suspend: $\delta f = 1.5 \times 10^{-12} \frac{Hz}{\sqrt{Hz}} \left(\frac{10Hz}{f}\right)^2 \left(\frac{\delta x_{seismic}}{2 \times 10^{-13}}\right)$
- » thermal lensing in TGG a problem; but can be compensated

Faraday Isolator III

40

50

60

Experiment: » highly absorbing TGG » 97.5% TEM₀₀ mode at normalized Intensity in LG₆₀-mode power levels of 150 W 0.95 **FI Design Process** Focus Comp. (Theory) screen for low α TGG 100% Thermal Comp. (Theory) **》** 68% Thermal Comp. (Theory) Thermal Comp. (Exper.) » build, test isolation unit Thermal Comp. and Focus Comp. (Exper.) » determine optimal 0.9 n 10 20 30 Power [W] FK51 length for best compensation

build, test integrated compensated FI **》**

LIGO-G020229-00-D

LIGO R&D

Mode Matching Telescope

• Two mirror design

- » LIGO I uses three mirrors
 - can compensate for waist size, position mismatch
 - requires (multiple) vacuum excursions
- » MMT1 is small 3" optic (SOS)
 - could be MC sized optic if stack resonances are a problem
- » MMT2 is PRM-sized optic (both size and suspension)
- Third element is adaptive
 - » no vacuum excursions
- Detailed design needs final core optics configuration
- Pointing and alignment stability
 - » stacks, suspensions very quiet¹; meets requirements
- ¹LIGO-T000053-01-D "Cavity Optics Suspension Subsystem Design Requirements Document, P. Willems, et al.

Adaptive Mode-Matching I

- Thermal effects in Advanced LIGO IFOs
 - » sapphire core optics; 800 KW arm cavity powers; 2 operating points
- Measuring higher order LG modes possible
 - » Bullseye design for LIGO I
- Adaptive MMT (no moving parts!)

LIGO R&D

Adaptive Mode-Matching II

- variable lens material: OG590 Schott glass
 - transmittance @ 1064 nm: >0.9999 P_{incident}, 532 nm: <0.00001 P_{incident}
 - scatter: $0.03 0.10 \text{ mm}^2$ of cross sectional area for 100 mm^3 volume
 - mounted directly to table
- heating laser: DPSS Nd:VO₄, 532 nm (could use different λ)
 - 10 W
 - amplitude and pointing stability TBD
 - waist: 6 mm at glass

·lensing

·1064 waist: 2-3 mm

· ΔOPD @ 532 nm: ~10⁻⁶ m/W; ΔOPD @ 1064 nm: ~ 0.2-0.3 x 10⁻⁶

m/W

 \cdot effective focal length range for 1064 nm: + 9.4 m to infinity

LIGO-G020229-00-D

LIGO R&D

Adaptive Mode-Matching III

Preliminary Design Plan

- » detailed MMT design using 2 mirrors + variable lens
- » thermal modal modeling
 - optimal ratio of waist sizes
- » prototype table top demonstration
 - characterization of effective mode matching range
 - characterization of modal distortions

Cost estimate (based on T. Frey work of summer 2001)

IO	Subsystem Management		225 , 150
IO	Design		1,360,977
IO	Fabrication		3,170,122
	Modulation/jitter suppression	3 x 195,426	
	Mirror blanks	3 x 182,615	
	Mirror polishing	$3 \times 212,200$	
	Mirror coatings	3 x 116,290	
	Metrology	$3 \times 14,700$	
	Isolator	3 x 296,640	
	Tooling and installation	116,500	

Total

4,756,250

This is for 4 subsystems (i.e., includes IO components for LASTI)