

#### **Advanced LIGO**

David Shoemaker → Gary Sanders

Elba "Aspen" Meeting

23 May 2002



#### Assumptions for LIGO future

- LIGO mission: detect gravitational waves and initiate astronomy
- Next detector
  - » Should be of astrophysical significance if it observes GW signals or if it does not
  - » Should be at the limits of reasonable extrapolations of detector physics and technologies
  - » Should lead to a realizable, practical instrument
- An effort of the entire LIGO Scientific Collaboration (LSC)
  - » LIGO Lab and other LSC members in close-knit teams
  - R&D and designs discussed here are from the Collaboration including the Lab



## Choosing an upgrade path

- Maximize astrophysics in the coming decade
  - » Must "fully" exploit initial LIGO
  - » Any change in instrument leads to lost observing time
  - » Minimum 1.5 years required between decommissioning one instrument and starting observation with the next
  - » → Want to make one significant change, not many small changes
    - Advanced LIGO searches in ~2.5 hours what initial LIGO does in ~1 year
- Technical opportunities and challenges
  - » Exploit evolution of detector technologies since the freezing of the initial LIGO design
  - » 'Fundamental' limits: quantum noise, thermal noise, Newtonian background provide point of diminishing returns (for now!)



# Present, Advanced, Future limits to sensitivity

#### Advanced LIGO

- » Seismic noise 40→10 Hz
- » Thermal noise 1/15
- » Shot noise 1/10, tunable
- » Initial → Advanced: factor <1000 in rate</p>

#### Facility limits

- » Gravity gradients
- » Residual gas
- » Scattered light

#### Beyond Adv LIGO

- » Seismic noise: Newtonian background suppression
- » Thermal noise: cooling of test masses
- » Quantum noise: quantum non-demolition





# LIGO Top level performance & parameters

| Parameter                           | LIGO I                               | LIGO II                       |  |  |
|-------------------------------------|--------------------------------------|-------------------------------|--|--|
| Equivalent strain noise, minimum    | 3x10 <sup>-23</sup> /rtHz            | 2x10 <sup>-24</sup> /rtHz     |  |  |
| Neutron star binary inspiral range  | 19 Mpc                               | 300 Mpc                       |  |  |
| Stochastic background sensitivity   | 3x10 <sup>-6</sup>                   | 1.5-5x10 <sup>-9</sup>        |  |  |
| Interferometer configuration        | Power-recycled MI w/ FP arm cavities | LIGO I, plus signal recycling |  |  |
| Laser power at interferometer input | 6 W                                  | 125 W                         |  |  |
| Test masses                         | Fused silica, 11 kg                  | Sapphire, 40 kg               |  |  |
| Seismic wall frequency              | 40 Hz                                | 10 Hz                         |  |  |
| Beam size                           | 3.6/4.4 cm                           | 6.0 cm                        |  |  |
| Test mass Q                         | Few million                          | 200 million                   |  |  |
| Suspension fiber Q                  | Few thousand                         | ~30 million                   |  |  |
| Ad                                  | 5                                    |                               |  |  |



# Anatomy of the projected detector performance

- Seismic 'cutoff' at 10 Hz
- Suspension thermal noise
- Internal thermal noise
- Unified quantum noise dominates at most frequencies
- 'technical' noise
   (e.g., laser frequency)
   levels held, in general, well
   below these 'fundamental'
   noises









## Advanced LIGO Development Team

|                 | Seismic                                       | Suspension                                                                                                           | Core Optics                                                                                                           | Input Optics                                             | Pre-Stab.                                                          | Aux. Optics                               | Ifo Sense &                                                                                       | Systems                                                                                                    |
|-----------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Group           | Isolation (SEI)                               | (SUS)                                                                                                                | (COC)                                                                                                                 | (IO)                                                     | Laser (PSL)                                                        | (AOS)                                     | Control (ISC)                                                                                     | Engineering                                                                                                |
| CIT             | requirements                                  | requirements; Fiber & bonding<br>research; final design; TNI noise<br>measure                                        | requirements; leads design;<br>coordinates materials develop.;<br>polishing; inhomogeneity<br>compensation; metrology | requirements; intensity<br>stabilization feedback to PSL | requirements; engin support & epics integration; performance eval. | requirements; photon actuation;           | requirements; electronics; system identification; 40m experiment/controls testbed                 | requirements; standards;<br>extend E2E simulation; system<br>trade studies; optical layout;<br>FFT studies |
| MIT             | requirements; LASTI prototype testing         | requirements; measure coating effect on Q; LASTI prototype testing                                                   | requirements                                                                                                          | requirements; integrated IO/PSL system test              | requirements; LASTI prototype<br>& IO/PSL integrated sys test      | requirements; active thermal compensation | requirements; system trade<br>studies; bench top DC read-out<br>exp.; PD testing; ISC design lead | requirements; define noise<br>budget, define shared signal<br>port power allocation, etc.                  |
| LLO             | engineering support                           |                                                                                                                      |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| LHO             |                                               |                                                                                                                      |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| Stanford/HP     |                                               |                                                                                                                      |                                                                                                                       |                                                          |                                                                    |                                           | Melody code                                                                                       |                                                                                                            |
| ACIGA           |                                               |                                                                                                                      |                                                                                                                       | high power system testing                                | stable/unstable resonator                                          | compensation                              |                                                                                                   |                                                                                                            |
| GEO/<br>Glasgow |                                               | welding; coating effect on mech<br>Q; local control studies; triple<br>performance in GEO-600; prelim<br>design lead |                                                                                                                       |                                                          |                                                                    |                                           | 10m signal recycling exp.; lock acq. & sensing matrix guidance                                    |                                                                                                            |
| GEO/            |                                               |                                                                                                                      |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| Hannover        |                                               |                                                                                                                      |                                                                                                                       |                                                          | Rod pumped system; leads<br>PSL system design                      |                                           |                                                                                                   |                                                                                                            |
| IAP             |                                               |                                                                                                                      | in-situ figure metrology                                                                                              | nign power Faraday isolator<br>development               |                                                                    |                                           |                                                                                                   |                                                                                                            |
| PS              |                                               |                                                                                                                      |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   | Bench code                                                                                                 |
| Iowa            |                                               | coating mech modeling                                                                                                |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| LSU             | MIMO control; SEI design lead                 | transient (excess) noise<br>measure; mode coupling study &<br>diagnostics                                            |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| MSU             |                                               | chem & flame polishing effect on Q; surface charge measure                                                           |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| Stanford        | hydraulic pre-isolation; ETF controls testbed | welding, bonding & coating effect<br>on mech Q; bonding strength                                                     | low absorption sapphire development                                                                                   |                                                          | MOPA system with LIGO 20W<br>MO                                    |                                           | back-illuminated InGaAs detectors                                                                 |                                                                                                            |
| Southern U      |                                               |                                                                                                                      | trace element identification; absorption                                                                              |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| SMA/Lyon        |                                               |                                                                                                                      | nign mech Q, low absorption coatings                                                                                  |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| Syracuse        |                                               | direct loss measure; effect of polishing, coating, bonding                                                           |                                                                                                                       |                                                          |                                                                    |                                           |                                                                                                   |                                                                                                            |
| UFL             |                                               |                                                                                                                      |                                                                                                                       | O system design; nigh power component tests              |                                                                    |                                           |                                                                                                   |                                                                                                            |



#### Interferometer Sensing & Control

- Signal and power recycling
- Considering DC (fringe offset) readout
- GEO 10m "proof of concept" experiment:
  - » Preparation proceeding well
  - » Results for 40m Program in early 2003 (lock acquisition experience, sensing matrix selection, etc.)



- 40m Lab for Precision Controls Testing:
  - » Infrastructure has been completed (i.e. PSL, vacuum controls & envelope, Data Acquisition system, etc.)
  - » Begun procurement of CDS and ISC equipment
  - » Working on the installation of the 12m input MC optics and suspensions, and suspension controllers by 3Q02



#### Seismic Isolation

- Choice of 10 Hz for 'seismic wall'
- Achieved via high-gain servo techniques, passive multiple-pendulum isolation
- Isolation design has 3 stages:
  - » External pre-isolator: reduces RMS,  $0.1 \rightarrow 10 \text{ Hz}$
  - » Two in-vacuum 6 DOF stages, ~5 Hz natural resonant frequency, ~50 Hz unity gain
  - » Hierarchy of sensors (position, Streckeisen seismometers, L4-C geophones)
- Second-generation prototype in assembly and test at Stanford





#### Seismic Isolation: Pre-Isolator

- External pre-isolator development has been accelerated for possible deployment in initial LIGO to address excess noise at LLO
  - » Feedback and feed-forward to reduce RMS
  - » Hydraulic, electro-magnetic variants
- Prototype to be tested in LASTI mid-2002
- Initial LIGO passive SEI stack built in the LASTI BSC and HAM
- Plan to install pre-isolator at LLO 1Q/2003







#### Suspensions

- Adaptation of GEO/Glasgow fused-silica suspension
  - » Quad to extend operation to ~10 Hz
- Suspension fibers in development
  - » Development of ribbons at Glasgow
  - » Modeling of variable-diameter circular fibers at Caltech allows separate tailoring of bending stiffness (top and bottom) vs. stretch frequency
  - » Choosing vertical 'bounce' frequency 12 Hz
  - » Can observe below (to Newtonian limit)
  - » Investigating 12 Hz line removal techniques to observe to within a line width of bounce frequency
- Attachment of fibers to sapphire test masses
  - » Hydroxy-catalysis bonding of dissimilar materials
  - » Silica-sapphire tested, looks workable





### LASTI Laboratory

- LIGO-standard vacuum system, 16-m 'L'
- Enables full-scale tests of Seismic Isolation and Test Mass Suspension
  - » Allows system testing, interfaces, installation practice.
  - » Characterization of non-stationary noise, thermal noise.
- Pre-stabilized laser in commissioning,
   1m in-vacuum test cavity
  - » Pursuing wider-bandwidth 'fast' loop configuration
  - » Will also be used for Adv LIGO intensity stabilization work
- Pre-isolator work for initial LIGO has taken upper hand
  - » Initial LIGO isolation system installed
- Advanced LIGO seismic isolation to arrive in 2003, suspensions to follow



Advanced LI



## Sapphire Core Optics

- Developing information for Sapphire/Fused silica choice
- Mechanical Q (Stanford, U. Glasgow)
  - » Q of 2 x 10<sup>8</sup> confirmed for a variety of sapphire substrate shapes
- Thermoelastic damping parameters
  - » Measured room temperature values of thermal expansion and conductivity by 2 or 3 (or four!) methods with agreement
- Optical Homogeneity (Caltech, CSIRO)
  - » New measurements along 'a' crystal axis are getting close to acceptable for Adv LIGO (13 nm RMS over 80mm path)
  - » Some of this may be a surface effect, under investigation



# Homogeneity measurements

#### Measurement data: m-axis



Date: 08/11/2000 Time: 14:23:44

Wavelength: 690.700 nm

Pupil: 100.0 % PV: 152.5563 nm

RMS: 27.0963 nm

X Center: 153.00 Y Center: 150.00 Radius: 143.43 pix Terms: None Filters: None

Masks:

#### and a-axis



Date: 10/25/2001 Time: 13:59:18 Wavelength: 1.064 um Pupil: 100.0 %

PV: 81.6271 nm RMS: 13.2016 nm X Center: 172.00 Y Center: 145.00 Radius: 163.00 pix Terms: None

Filters: None Masks:



## Sapphire Core Optics

- Effort to reduce bulk absorption (Stanford, Southern University, CS, SIOM, Caltech)
- LIGO requirement is <10 ppm/cm</li>
- Recent annealing efforts are encouraging
  - Stanford is pursuing heat treatments with forming gas using cleaner alumina tube ovens; with this process they saw reductions from 45ppm/cm down to 20ppm/cm
  - » Higher temperature furnace commissioned at Stanford

 Demonstration of super polish of sapphire by CSIRO (150mm diameter, m-axis)

- » Effectively met requirements
- Optical Homogeneity compensation
  - » Ion beam etching, by CSIRO
  - » 10 nm deep, 10 mm dia, 90 sec
  - » Microroughness improved by process!
  - » Also pursuing 'pencil eraser' approach with Goodrich, good results





## Coatings

- Mechanical losses of optical coatings leading to high thermal noise starting to understand where losses are
  - » SMA/Lyon (France) pursuing a series of research coating runs to understand mechanical loss
  - » multi-layer coating interfaces are not significant sources of loss
  - » most significant source of loss is probably within the Ta<sub>2</sub>O<sub>5</sub> (high index) coating material; investigating alternative
  - » now investigating, with SMA/Lyon, the mechanical loss of different optical coating materials and "engineered" Ta<sub>2</sub>O<sub>5</sub> coatings
- Optical absorption in coating leading to heating & deformation in substrate, surface
  - » Can trade against amount, complexity of thermal compensation; initial experimental verification near completion
  - » MLD (Oregon) pursuing a series of research coating runs targeting optical losses
  - » Sub-ppm losses (~0.5 ppm) observed in coatings from both MLD and from SMA Lyon



### Light source: Laser, Mode Cleaner

- Input Optics (Univ. of Florida)
  - » Modulator with RTA shows no evidence of thermal lensing at 50W
  - » RTA-based EOMs are currently being fabricated
  - Demonstrated 45 dB attenuation and 98% TEM00 mode recovery with a thermally compensated Faraday Isolator design (-dn/dT materials)
- Pre-Stabilized Laser (PSL)
  - » Coordinated by Univ. of Hannover/LZH
  - » Three groups pursuing alternate design approaches to a 100W demonstration
    - Master Oscillator Power Amplifier (MOPA) [Stanford]
    - Stable-unstable slab oscillator [Adelaide]
    - Rod systems [Hannover]
  - » Concept down select Aug 2002



# High Power Testing: Gingin Facility

- ACIGA progressing well with high power test facility at Gingin
  - » Test high power components (isolators, modulators, scaled thermal compensation system, etc.) in a systems test
  - » Explore high power effects on control length, alignment impulse upon locking
  - » Investigate the cold start optical coupling problem (e.g, pre-heat?)
  - » Compare experimental results with simulation (Melody, E2E)

#### Status

- » LIGO Lab delivering two characterized sapphire test masses and a prototype thermal compensation system
- » The facility and a test plan are being prepared





#### Development Plan

- R&D, distributed throughout LSC, well underway
  - » No 'showstoppers' found yet! ...and lot's of progress!
- Integrated Systems Tests of all new aspects of design
  - » Seismic Isolation Test at Stanford ETF, LASTI; Pre-Stabilized Laser (PSL), Input Mode Cleaner, Suspensions at LASTI
  - » High power testing at ACIGA Gingin facility
  - » Configurations, Servo Control Electronics Testing at the GEO Glasgow 10m lab, and in the LIGO 40m Lab
- Construction funding proposal, late '02
  - » For fabrication, installation, commissioning
  - » Could be funded by early '05
  - » Operating late in the decade
- May upgrade one observatory, then second system upon proof of success; or all at once – depending upon observations, network at that time, and technical readiness



#### Advanced LIGO

- A significant step forward
  - » Exciting astrophysical sensitivity
  - » Challenging but not unrealistic technical goals
  - » Advances the art in materials, mechanics, optics, lasers, servo controls
- Very active collaboration
  - » NSF-funded research community
  - » International partners
- Program planned to mesh with fabrication of interferometer components leading to installation of new detectors starting in 2006 or 2007
  - » Lessons learned from initial LIGO
  - » Thorough testing at LSC facilities to minimize impact on LIGO observation
  - » Coordination with other networked detectors to ensure continuous global observation