

Advanced LIGO Suspension Model in Mathematica

Gravitational Wave Advanced Detector
Workshop

Elba - May 2002

Mark Barton

Why a new model?

- The GEO design used as a baseline for Advanced LIGO comes with a Matlab model by Torrie, Strain, Fritschel et al.
- The Matlab model is useful (and the low run time means it will continue to have a role) but it has a number of limitations:
 - 1. Assumes symmetry
 - 2. Only directly models wires allows for blades by approximate methods
 - 3. Only directly models longitudinal elasticity of wires
 - 4. Provision for thermal noise model separate
 - 5. Quad version much less thoroughly validated than triple

Why Mathematica?

- A framework for modelling pendulums had been created for earlier work on the X-pendulum (for TAMA300) which could be easily recycled
- Symbolic computation capability allows configuration of pendulum to be specified in high-level terms, with mass and stiffness matrices generated automatically
 - -> more flexible
 - -> more ambitious systems can be modelled
 - -> more reliable (debugging can be done largely by inspection of the specification)

Framework Features (i)

- The framework allows for the following elements to be freely combined:
 - » 6 degree-of-freedom rigid bodies
 - » massless wires with
 - longitudinal elasticity based on geometric distance between endpoints
 - bending elasticity (from solution of beam equation)
 - additional longitudinal elasticity due to bending
 - » springs with
 - 6x6 matrix of elastic constants between x, y, z, yaw, pitch, roll
 - vector of 6 pre-stress forces and torques
 - » arbitrary frequency dependence of damping on each source of elasticity

Framework Features (ii)

- The framework computes the following automatically
 - » equilibrium position
 - » mass matrix M (such that T = $1/2 \underline{v}^T \mathbf{M} \underline{v}$)
 - » separate stiffness matrices \mathbf{K}_i (such that $\mathbf{E}_i = 1/2 \mathbf{x}^T \mathbf{K}_i \mathbf{x}$) for each group of terms in the potential with common damping
 - » a total stiffness matrix (with damping neglected)
 - » eigenfrequencies and eigenmodes
 - » coupling matrices (analogous to stiffness matrices) from the support or other sources of displacement input to the pendulum
 - » matrix valued "equation of motion" and "coupling" functions of frequency incorporating the frequency-dependent damping with dissipation dilution

Framework Features (iii)

- The framework has model-independent functions for
 - » transfer function plots for arbitrary inputs to arbitrary outputs (or linear combinations thereof)
 - » thermal noise plots for arbitrary degrees of freedom (or linear combinations thereof)
- The framework has utilities and templates that can be customized to create model-dependent functions for
 - » tabular display of normal modes
 - » 3D plots of normal mode shapes

Triple Model Features

- 3 objects representing upper masses and optic
- 6 objects representing tips of blade springs
- 9*6=54 total degrees of freedom
- 6 springs representing elasticity of blade springs
- 10 wires (or fibres depending on parameters)
- parameter names as for Matlab triple model
- parameter sets representing
 - » Glasgow all-metal protoype
 - » current mode cleaner reference design

Quad Model Features

- 4 objects representing upper masses and optic
- 6 objects representing tips of blade springs
- 10*6=60 total degrees of freedom
- 6 springs representing elasticity of blade springs
- 14 wires
- parameter names as for Matlab quad model
- default parameters simulating MIT quad protoype (but easily overridable)

Sample Input (i)

```
allvars = {
    xul,yul,zul,yawul,pitchul,rollul,
    xur,yur,zur,yawur,pitchur,rollur,
    x0,y0,z0,yaw0,pitch0,roll0,
    xil,yil,zil,yawil,pitchil,rollil,
    xir,yir,zir,yawir,pitchir,rollir,
    x1,y1,z1,yaw1,pitch1,roll1,
    xll,yll,zll,yawll,pitchll,rollll,
    xlr,ylr,zlr,yawlr,pitchlr,rolllr,
    x2,y2,z2,yaw2,pitch2,roll2,
    x3,y3,z3,yaw3,pitch3,roll3
};
```

 The specification of the model starts with a list of 'variables" describing the state of the system and a similar list of "parameters" describing the support structure

Sample Input (ii)

```
optic = \{x3, y3, z3, yaw3, pitch3, roll3\};
opticlf={-sl,-n5,d4};
gravlist = {};
AppendTo[gravlist, mbeu q zul];
AppendTo[gravlist, mbeu q zur];
AppendTo[gravlist, m3 g z3];
```

- Specify body coordinate systems for objects
- Specify wire attachment points etc in body coordinates
- Specify gravitational terms in potential

LIGO-G020250-00-D 10 25-May-02

Sample Input (iii)

```
AppendTo[wirelist,{
    massI,
    massIllf,
    massIllfvec.
    optic,
    opticif,
    opticlfvec,
    Y3,
    ul3,
    kw3,
    \{1,0,0\},
    M31,
    M32,
    fibretype,
    fibreatype
}];
```

Specify wires:

- » Masses
- » Attachment points
- » Attachment angles
- » Young's modulus
- » unstretched length
- » net longitudinal elasticity
- » principal axis
- » moment of area parallel and perpendicular to principal axis
- » tags representing damping for longitudinal and bending

Sample Input (iv)

Specify the kinetic energy as an expression

```
kinetic = (
  (1/2) mbeu Plus@@(Dt[b2s[bladeUL,COM],t]^2)
  +(1/2) cmegaB[yawul, pitchul, rollul].IBU.omegaB[yawul, pitchul, rollul]
...
);
```


Sample Input (v)

 Specify values of constants and damping functions in a mix of symbolic and numeric forms

```
defaultvalues = {
    g -> 9.81,
...
    tx -> 0.12,
    tr -> 0.14,
    den3 -> 4000.,
    m3 -> den3*N[Pi]*tr^2*tx,
...
    damping[imag,fibretype] -> ((phisilica + phissilica/r3/2)&),
    damping[imag,fibreatype] -> ((phisilica + phissilica/r3 +
    deltafibre*(2*N[Pi]*#1*taufibre)/(1+(2*N[Pi]*#1*taufibre)^2))&)
};
```


Sample Output (i)

Eigenmode listing

	X	У	Z	yaw	pitch	roll
UL blade	0.00058671	0	0	0	-0.000160617	0
UR blade	0.00058671	0	0	0	-0.000160617	0
Mass N	0.0798412	0	0	0	-0.231023	0
IL blade	0.0799878	0	0	0	-0.231074	0
IR blade	0.0799878	0	0	0	-0.231074	0
Mass U	0.131946	0	0	0	-0.287388	-0.000184555
LL blade	0.132145	0	0	0	-0.287503	-0.000184785
LR blade	0.132145	0	0	0	-0.287503	-0.000184785
Mass 2	0.198733	0	0	0	-0.379219	-0.000173231
optic	0.360874	0	0	0	-0.454855	-0.000173412

Sample Output (ii)

Eigenmode plot ->

<- Transfer function (x-x)

Sample Output (iii)

Thermal noise plot

- » Data from version of MIT quad prototype with fused silica fibres instead of wires in the last stage
- » Comparison curve (lower) from Fluctuation Dissipation Theorem applied to last stage only

Status

- Triple version validated against Torrie et al's Matlab triple >
 four figure agreement in mode frequencies for key test cases
- Quad version validated against (corrected) Matlab quad model
- Thermal noise at higher frequencies validated against analytical predictions using FDT on last stage only
- Validation for asymmetrical systems in progress
- Blade spring model adequate for low frequency purposes but crude - a better one will be developed over the next few months
- Current versions online:

http://www.ligo.caltech.edu/~mbarton/SUSmodels/