

Laser Interferometer Gravitational-Wave Observatory (LIGO)

E7 status overview

Elba, 2002 Szabolcs Márka for the LIGO Collaboration

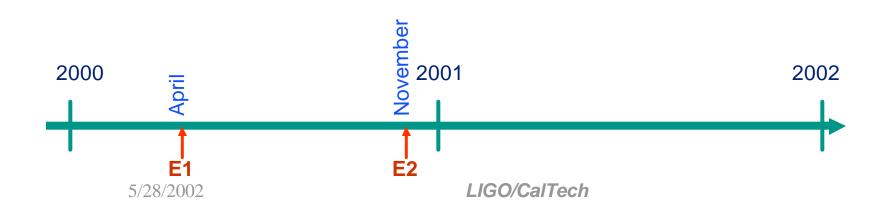
May, 2002

5/28/2002

LIGO/CalTech

LIGO-G020257-00-D

The First Two Engineering Runs at LHO

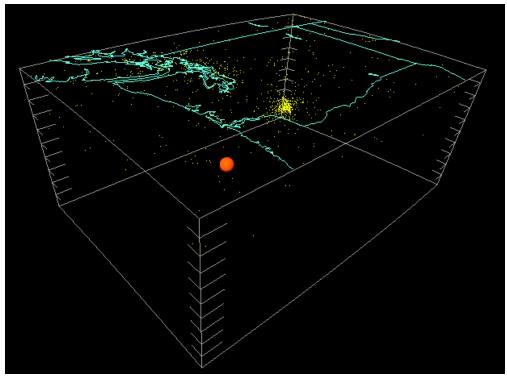

3 – 4 April 2000 and 8 – 15 November 2000

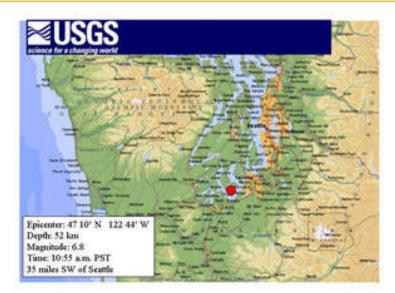
E1

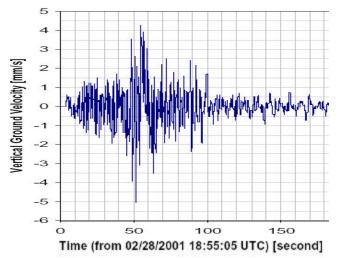
- One arm run at LHO
- Only at LHO
- The first of a series where the later episodes are just getting better and better...
- Good PEM results

E2

- Recombined interferometer with Fabry-Perot arm cavities at LHO
- Excellent PEM results
- Sets the standards for the Engineering Runs
- More than 15 investigations !



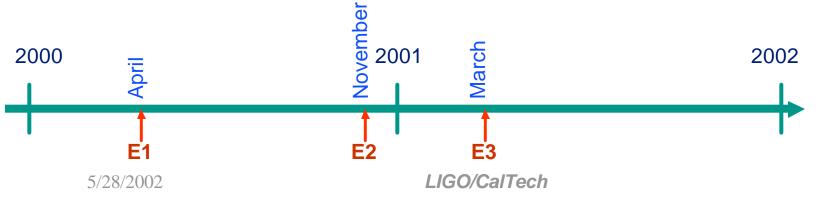



February 28, 2001 10:55am PST The Nisqually Earthquake

LIGO/CalTech

Magnitude:6.8Location:20km NE of Olympia, Washington
47.2 N 122.7 WDepth:52 km

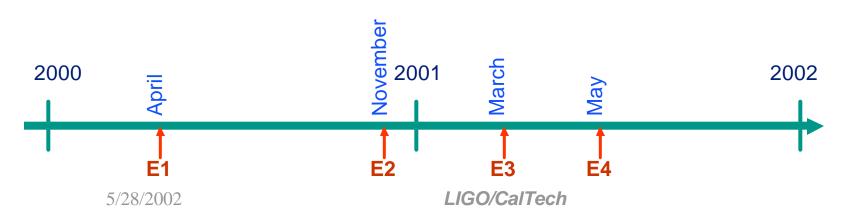
5/28/2002



The Third Engineering Run at LXO

March 9-12

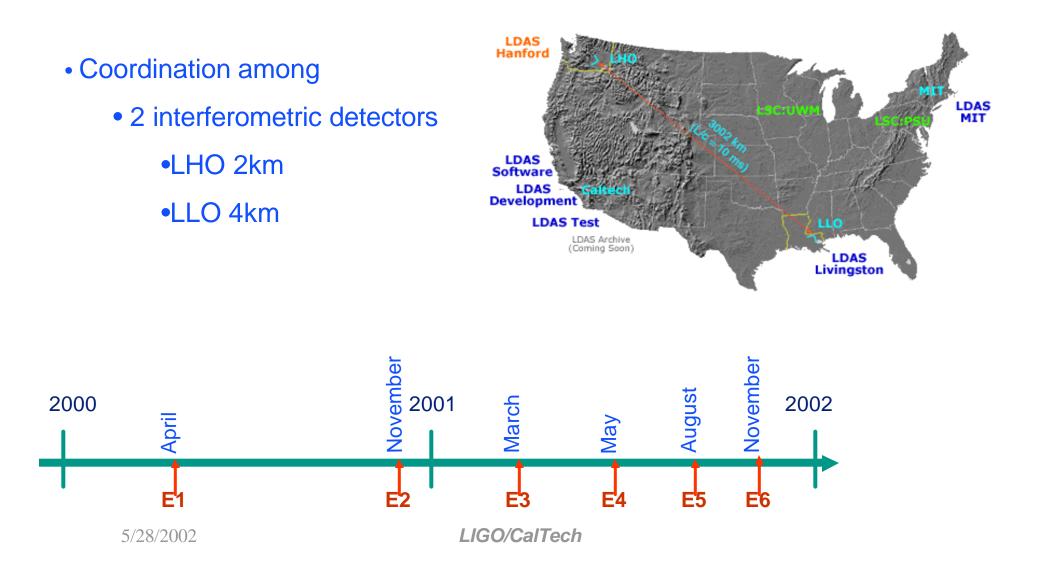
- First joint engineering run between LIGO sites
 - » X-arm locked for LLO
 - » **PEM** for LHO
- Principal goals:
 - » High up time
 - » High overlap time for PEM
 - » Get experience with the detector



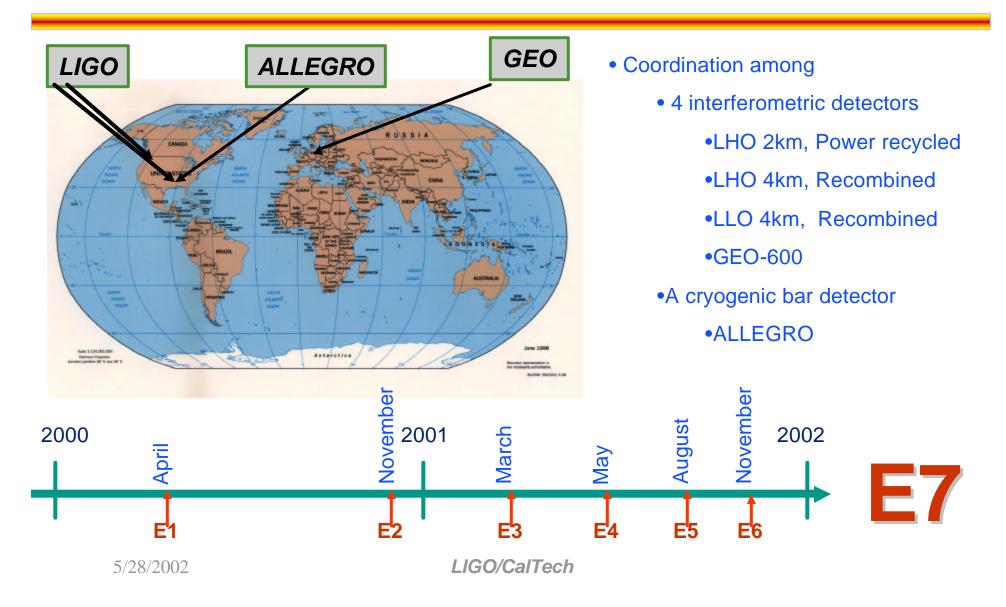
The Fourth Engineering Run at LXO

May 11-14

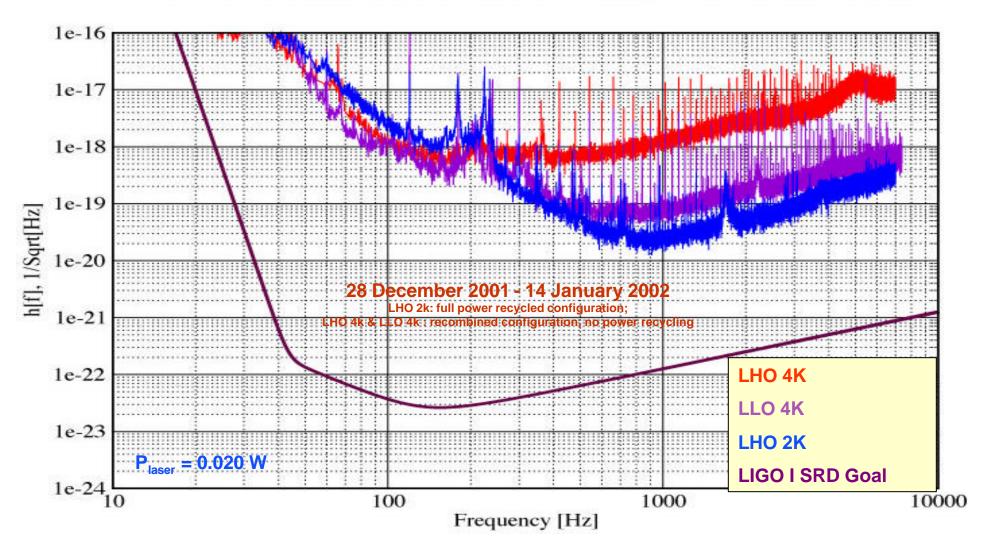
- Joint engineering run of LIGO sites
 - » Recombined Fabry-Perot configuration for LLO
 - » **PEM** for LHO
- Principal objectives:
 - » Maintain lock for extended periods
 - » Collect data for PEM site correlations
 - » Access and learning opportunity for LSC
 - » Record data for investigations
 - » Hone our skills, identify bottle necks



The Fifth and Sixth Engineering Run at LXO


August 3-6, 2001 and November 16-19, 2001

First Time :


International Network of Gravity Wave Detectors of various kind...

E7: Calibrated sensitivity

Strain Sensitivities for the LIGO Interferometers for E7

E7: DAQ and data

- The data acquisition system continuously sampled data on
 - » 6544 channels in Hanford
 - » 1348 channels in Livingston.
- Each channel was sampled at a rate between
 - » 16 Hz and 16 kHz
- The data rate was
 - » 4.7 MB/s at Hanford
 - » 2.7 MB/s at Livingston.
- The acquired data were stored on local disk caches of
 - » 8.5 TB at Hanford
 - » 4.8 TB at Livingston
- The raw available for online data analysis.
- Also archived at the Caltech Center for Advanced Computing Research.

E7: Analysis is strongly going on at every front...

Burst searches

- » Externally triggered search
- » Excess power detector
- » Slope detector
- » Time-Frequency cluster analysis

Inspiral searches

- » Conventional optimal Wiener filtering with chirp templates
- » Fast Chirp Transform (FCT)

Periodic source searches

- » All sky unbiased
- » Known pulsar
- » Wide area search

Stochastic searches

- » Cross correlating the signal from the Hanford + Livingston IFOs
- » Correlate LLO with ALLEGRO bar detector
 - ALLEGRO was rotated into 3 different positions during E7 !

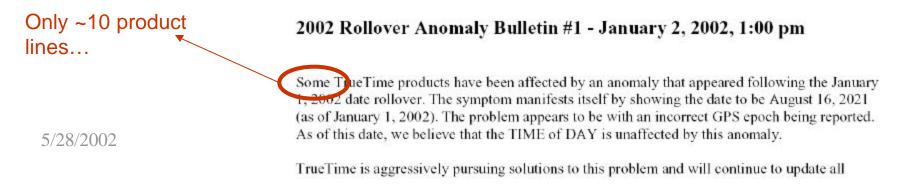
E7: Data Analysis

- Preliminary analysis of E7 data by LDAS at the sites.
 - » Four symmetric multi-processor (SMP) servers
 - » set of 16 Linux PCs forming a so-called Beowulf cluster
- Data segment and DMT trigger info ingested into the on-site relational databases
- The four data analysis working groups prepared 8 different search strategies, including
 - » matched filter techniques using known templates and fast chirp transformation for inspirals
 - » excess power, a signal slope and time-frequency clustering algorithm for burst detection
 - » algorithm for correlating the stochastic background between the LIGO and ALLEGRO
 - » algorithm for the continuous wave search.
- The data of all locked segments was run through one or more of these eight search strategies.
 - » Close to 114,000 individual jobs were processed
 - » ~95% completed successfully without generating an error condition.
 - » Three quarters of the jobs were performing astrophysical and detector characterization tasks.
 - » The remaining quarter were database and trigger related
 - » These jobs generated a staggering 7M candidate events, inserted back into the database.
 - » New thresholds and veto conditions are needed to reduce this number significantly.

5/28/2002

LIGO/CalTech

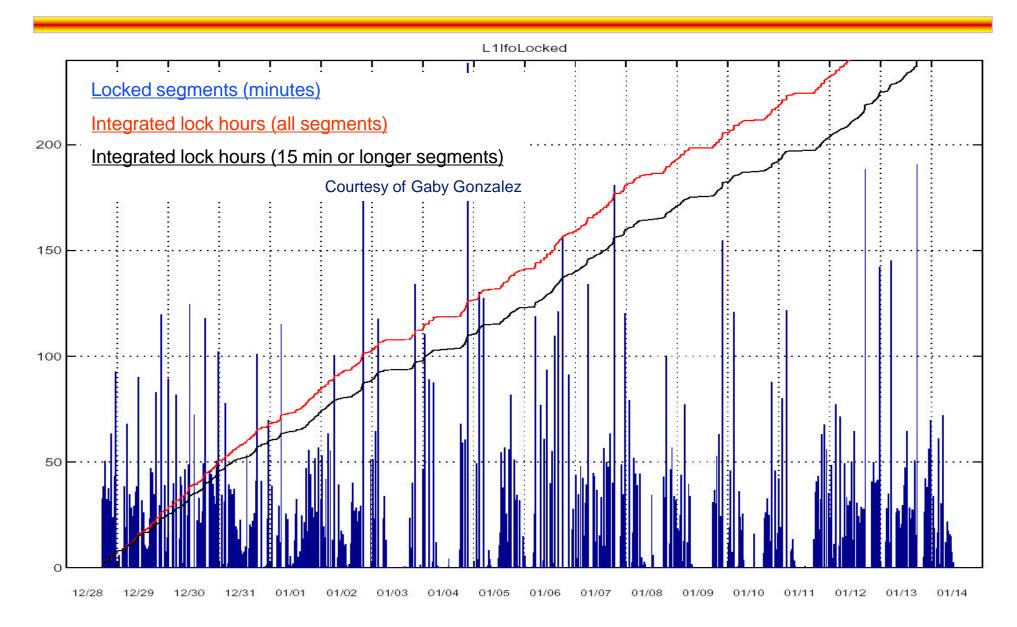
E7: Timing The Y2002 Surprise


The TrueTime GPS bug hit us at New Year's Eve

- » We set up new timeservers at both observatories
- » These temporary servers were running until the end of E7
- » Some data loss due to frame builder problems
- Fermilab experienced similar problems
- ALLEGRO, GEO and TAMA did not report any problems

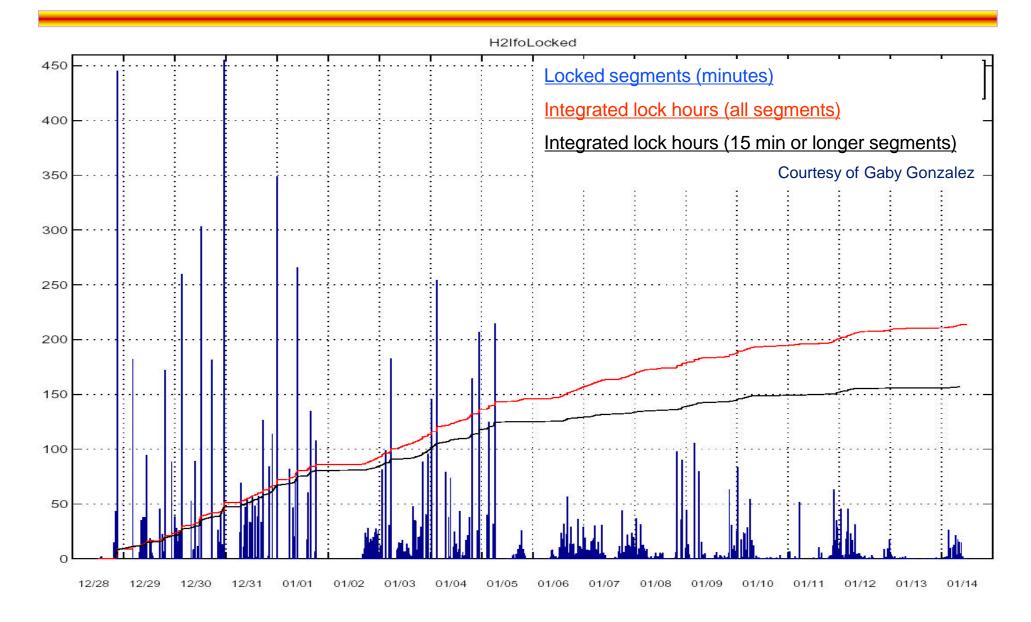
3750 Westwind Boulevard Santa Rosa, California 95403

t 707.528.1230 f 707.527.6640 w www.truetime.com

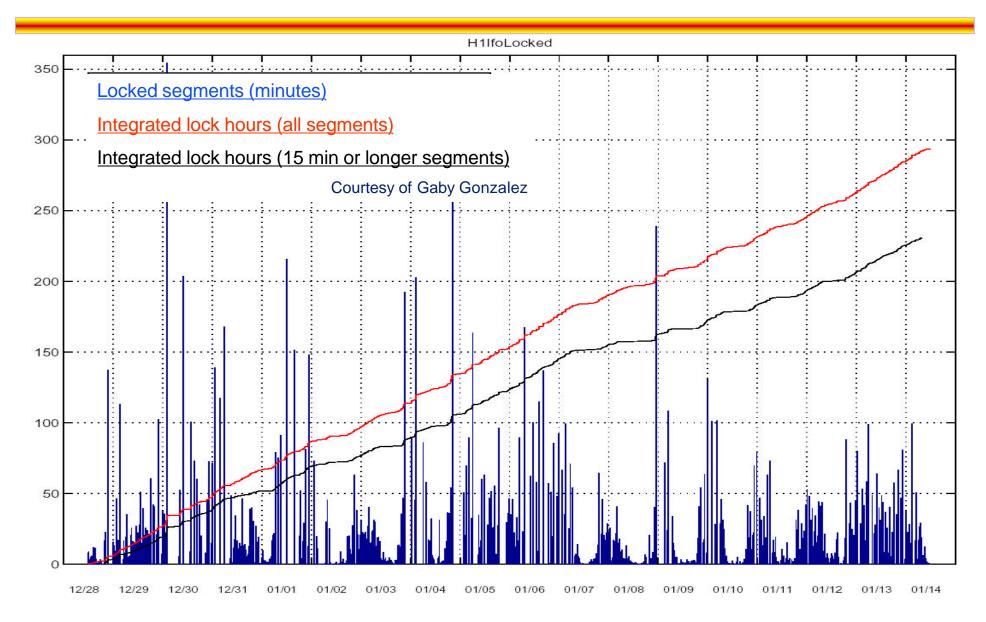

E7: Lock Statistics 1

Courtesy G. Gonzalez, M. Hewiston and A. Lazzarini

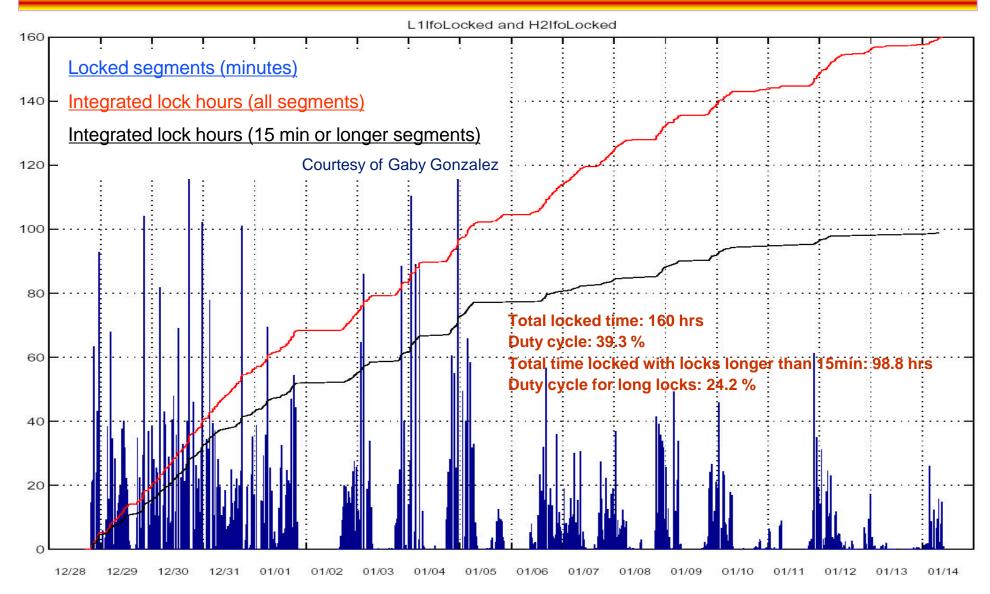
Total Locked Times for Individual Interferometers		Run duration: 28 Dec 2001 - 14 Jan 2002 ~ 402 hours (~ 306 "quiet" hours)			
<u>All segments</u>	Long segments *	Coincidence Statistics			
L1 locked 284hrs (71%)	249hrs (62%)				
L1 clean 265hrs (61%)	231hrs (57%)		All segments	Long segments *	
H1 locked 294hrs (72%)	231hrs (57%)	Double coincidence (H2, L1)			
H1 clean 267hrs (62%)	206hrs (48%)	locked	160hrs (39%)	99hrs (24%)	
		clean	113hrs (26%)	70hrs (16%)	
	4 E Z h m (200/)	H2,L1 longest coincident clean segment: 1:50			
H2 locked 214hrs (53%)	157hrs (39%)	Triple coincidence (L1+H1+ H2)			
H2 clean 162hrs (38%)	125hrs (28%)	locked	140hrs (35%)	72hrs (18%)	
		clean	93hrs (21%)	46hrs (11%)	
 The longest clean locked segment is: 3:58 hours for LIGO Livingston 4K (L1) 4:04 hours for LIGO Hanford 4K (H1) 7:24 hours for LIGO Hanford 2K (H2) *Only segments longer than 15 minutes were considered. 					
		L1+H1+ H2 : longest clean segment: 1:18			
		Quadruple coincidence (L1+H1+ H2 +GEO)			
		locked	77 hrs (23 %)	26.1 hrs (7.81 %)	
		Quintuple coincidence ($L1+H1+H2+GEO+ALLEGRO$)			
		Sorry no data yet			
			-		



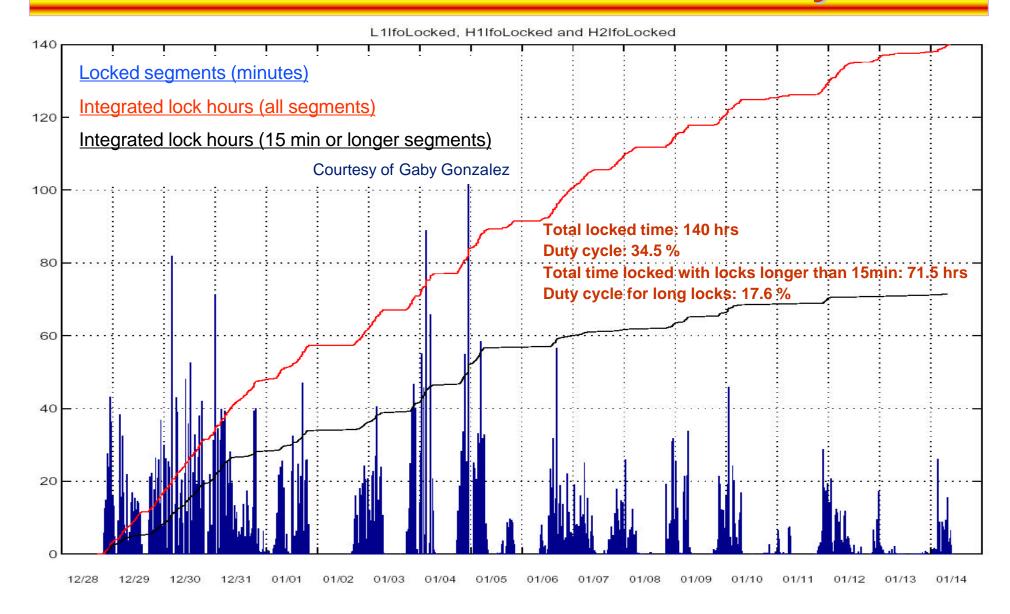
E7: LLO 4K lock history



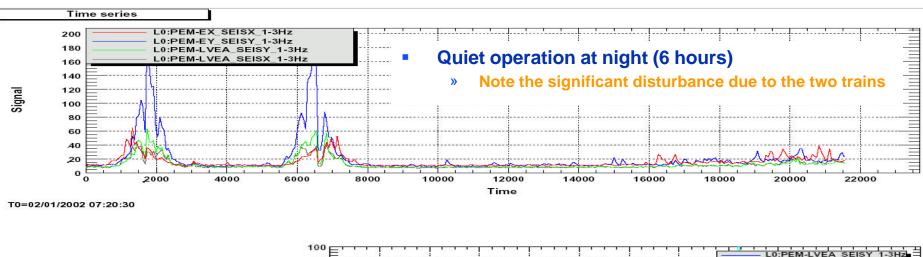
E7: LHO 2K lock history

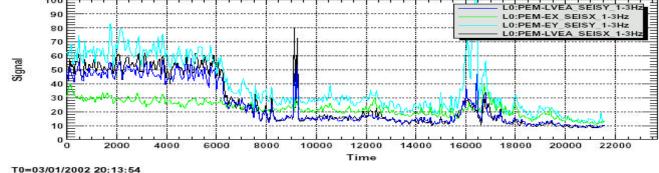


E7: LHO 4K lock history



E7: LHO 2K – LLO 4K coincident lock history



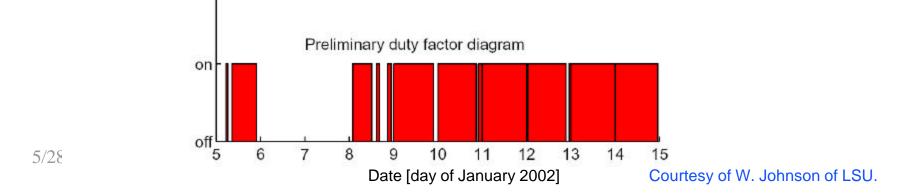

E7: LHO 2K – LHO 4K – LLO 4K coincident lock history

E7: Typical features of seismic RMS

Noisy to Quiet transition

» Note the significant change of LVEA and EY signals

5/28/2002


LIGO/CalTech

E7: ALLEGRO lock history

Data collected in 3 Orientations

- Good data started with first alignment (~ IGEC alignment)
 - 48° W of N from UT008/01:21 to UT010/20:53
- Aligned to LLO Yarm call this positive correlation
 - 18° W of N from UT010/23:27 to UT012/20:50
- Nearly null alignment to LLO nearly 45° off the LLO Yarm
 - ~68° W of N from UT012/23:30 to UT014/22:13 (after E7)
 - (discovered uncertainty in last orientation. Will remeasure.)
- (missing data aligned to LLO Xarm or negative correlation)

E7: GRB events during the run !

- 16 triggers for the duration of E7 !
- Various degrees of confidence
- Various degrees of directional information
- Very promising, the analysis is ongoing !

	Detector		DATE
1.	ULYSSES		01/12/28
2.	BEPPOSAX GRBM, ULYSSE	01/12/28	
3.	BEPPOSAX GRBM	This data here is the	01/12/30
4.	BEPPOSAX GRBM	property and courtesy	01/12/31
5.	KONUS WIND	of various experiments	02/01/02
6.	BEPPOSAX GRBM	(Ulysses, Konus, SAX,	02/01/02
7.	GCN/HETE	and HETE) and	02/01/05
8.	BEPPOSAX GRBM	networks (IPN and	02/01/06
9.	ULYSSES, KONUS WIND	GCN). It may not be	02/01/06
10.	GCN/HETE	used for any purpose	02/01/08
11.	GCN/HETE	without the prior	02/01/08
12.	GCN/HETE	approval of the	02/01/10
13.	BEPPOSAX GRBM	corresponding group.	02/01/12
14.	KONUS WIND, BEPPOSAX, HETE		02/01/13
15.	KONUS WIND, BEPPOSAX	02/01/13	
16.	ULYSSES, HETE		02/01/14

E7: Synchronized signal injection

P. Shawhan, S. Bose, D. Brown, G. Gonzalez, R. Adhikari, J. Zwezig, Sz. Marka

E7: Data Monitoring Tool

- Several computers dedicated to real time monitoring of the
 - DAQ system
 - Data quality
 - Environmental sensors
 - Interferometer status
 - Timing
 - And other important diagnostic issues
- Several monitors evolved and more is being crafted
- New ideas can be tested and prototyped rapidly
- High loads were managed well during E7

LIGO

E7: DMT Monitor Processes 1

Data and timing integrity

- » <u>BitTest:</u> Search for channel readout errors
- » <u>Slice2:</u> Search for DAQ system errors
- » <u>TimeMon:</u> Check timing accuracy and stability
- » <u>IRIG-B:</u> Check timing synchronization.
- » <u>blrms mon:</u> Band limited RMS on PEM channels

Steady state noise

- » <u>LLO ifo blrms:</u> Band limited rms of IFO channels
- » <u>**RmsBands:</u>** Band limited rms, various channels, bands</u>
- » <u>MultiVolt:</u> Power line stability (LHO Only)

5/28/2002

LIGO/CalTech

Courtesy of D. Sigg and J. Zweizig

E7: DMT Monitor Processes 2

Transient detection

- » glitchMon: Search for transients.
- » ZGlitch: Search for transients (PSLmon glitch tool)
- » tidd: Search for and identify transients in T-F plane
- » eqMon: Search for earthquakes (LHO Only)

IFO performance

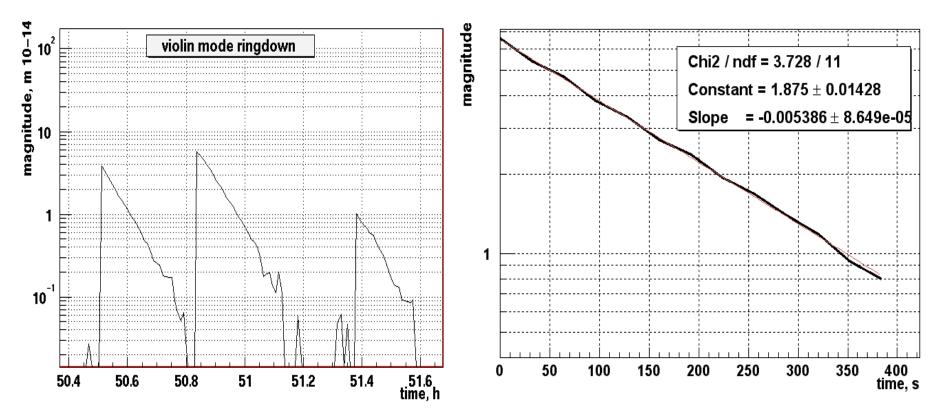
- » LockLoss: Tag lock loss events
- » <u>ServoMon</u>: Search for servo instabilities.
- » <u>SegGener:</u> Identify segments to analyze
- User tools
 - » <u>Glitch plotting:</u> Utility based on DB records
 - » <u>RaleighMonitor</u>: Enhanced T-F plots in real time

5/28/2002

LIGO/CalTech

Courtesy of D. Sigg and J. Zweizig

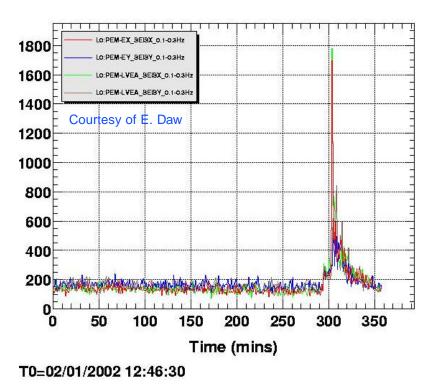
E7: Investigations


- 1. Quantify correlations between GW channel and other channels.
- 2. Quantify correlated ambient noise between sites
- 3. Quantify correlated environmental transients between sites
- 4. Identify & catalog environmental disturbances
- 5. Quantify calibration stability & stationarity of data
- 6. Investigate angular fluctuations
- 7. Check data against detailed tidal prediction
- 8. Investigate sources of lock losses
- 9. Quantify timing precision (intra- and inter-site)
- 10. Check data integrity end-to-end
- 11. Check data merging
- 12. Quantify strength and stability of line noise in GW channel
- 13. Test simulated astrophysical signal injection

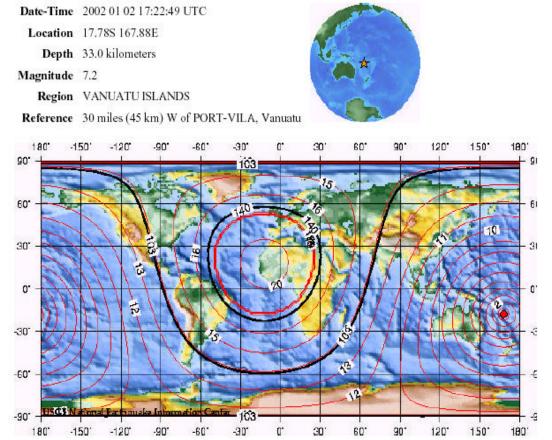
and others evolve ...

DMT example: Violin mode ringdown

- Excited by external events (usually start of lock)
- Can measure decay time and Q
- Clearly seen in E7 data
- Violin resonances are monitored during LIGO runs


Courtesy of Sergei Klimenko of University of Florida

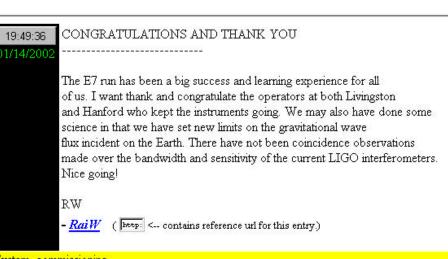
 $\tau = 185 \text{ s}$ f=343.667Hz


E7: "blrms" Earthquake example

Predicted arrival times:

- Knoxville, Tennessee 113.75 14:42.5 17:37:31.5 Pdiff
- Los Angeles, California 87.10 12:42.4 17:35:31.4 P
- Seattle, Washington 90.13 12:56.7 17:35:45.7 P
- Brownsville, Texas 101.59 13:48.5 17:36:37.5 Pdiff
- Knoxville, Tennessee 113.75 14:42.5 17:37:31.5 Pdiff
- Boston, Massachusetts 124.60 15:30.7 17:38:19.7 Pdiff

Theoretical P-Wave Travel Times



LIGO/CalTech

Summary

- Consistent advance towards the sensitivity goal
- The data is quite "bursty" making time domain analyses harder
- Long lock sections were observed
- Duty cycle is very good at good times
- We clearly need better overall locking stability however
- Collected plenty of (coincident) data
- There is a strong analysis effort
- The engineering run sequence is a definite success in general, E7 is successful in particular
 - » Principal goals:
 - Good up time
 - Significant overlap time
 - Plenty of data for investigations
 - Hone our skills, identify bottle necks
- Science run is scheduled for 2002

ystem, commissioning

5/28/2002

LIGO/CalTech

Preliminary schedule of future runs

Engineering run 8

- » June 8 10
- » ~72 hours only LHO
- » Tool and procedure practice before S1
- Science 1 run: 13 TB data
 - » 29 June 15 July
 - » 2.5 weeks comparable to E7
- Science 2 run: 44 TB data
 - » 22 November 6 January 2003
 - » 8 weeks -- 15% of 1 yr
- Science 3 run: 142 TB data
 - » 1 July 2003 -- 1 January 2004
 - » 26 weeks -- 50% of 1 yr

