

Commissioning, Part II

PAC 12, June 2002 Peter Fritschel, LIGO MIT

Where do we go from here?

- Stability & robustness improvements
 - Acquisition time and lock duration
 - Residual fluctuations (mostly power) while in lock
- High frequency noise reduction
 - Shot noise region: increasing the effective/detected power
- Low frequency noise reduction
 - Electronics noise that produces force noise on the test masses
 - Configuring and tuning control systems:
 - Frequency and intensity stabilization of the input beam
 - Controlling the longitudinal and orientation degrees-of-freedom of the core optics to the required levels, without introducing noise into the gravitational wave channel

Lock acquisition reliability

- Acquisition is not yet completely reliable (not a great hindrance either)
 - ➤ Can take ~10s, but can also be elusive for ~hours
- Initial optical alignment is a poorly controlled element in the process
 - Currently initial alignment is done manually by maximizing or minimizing power in substates of the interferometer
 - Substates: single arm cavity; simple Michelson; power recycled Michelson (unused mirrors misaligned)
 - Plan to automate the initial alignment process, using an additional wavefront sensor to provide alignment information of all degrees-offreedom of the interferometer substates
 - Will make initial alignment more reproducible, and shorten time spent on manual alignment
 - Implementation: starting with LHO 2k, immediately after S1

Stability improvements: reduction of angular fluctuations

- Angular fluctuations of core optics lead to difficulty in locking and large power fluctuations when locked
 - Fluctuations dominated by low-frequency isolation stack and pendulum modes
 - Suspension local sensors damp the pendulum modes, but have limited ability to reduce the rms motion
 - Optical lever sensors:
 - initially meant as an alignment reference and to provide long term alignment information
 - they turn out to be much more stable than the suspended optic in the ~0.5-10 Hz band
 - wrap a servo around them to the suspended optic, with resonant gain peaks at the lowest modes

Optical lever servo results

Stability improvements: seismic noise

- 2 D.O.F. external active isolation, using existing PZT fine-actuators
- Modest bandwidth, but resonant gain gives good suppression at low-f modes

SISO controller, East and West

ŁIGO

External preisolation results: LLO End Stations to be installed on Input Masses after S1

4x reduction in rms

High-frequency noise: shot noise

- ☐ Increasing the light on the output photodetector
 - low light level is required for lock acquisition, to avoid saturation from transients
 - ➤ light level is increased after lock using an electro-optic variable attenuator ⇒ currently we detect about 1% of the AS port light
- power increase limited by
 - Low-freq fluctuations of the differential mode signal more low-freq gain in loop
 - Low-freq fluctuations in the orthogonal phase rf-signal more suppression in other
- more suppression in other D.O.F.

LIGO-G020268-00-D

Increased functionality of real-time digital filtering

- □ Recent real-time code enhancements have made it much easier to implement complex digital filters
 - All digital feedback systems LSC, ASC, DSC now use a new 'generic filter module'

Incremental improvements on processing & I/O time have also helped

LIGO

Low frequency noise: common mode servo

- What is it? Feedback loop from the 'common mode' error signal error between the average arm length and the laser frequency to the laser frequency
 - Provides the final level of frequency stabilization, after the prestabilization and mode cleaner stages
 - ➤ Ultimately, need a stability of 3x10⁻⁷ Hz/rtHz at 150 Hz
 - Lock is acquired with feedback only to the end mirrors ...
 - the tricky operation is then to transfer the common mode feedback signal to the laser frequency, with multiple feedback paths

Status

- ➤ LHO 2k: operational in final configuration, not fully characterized
- > LLO: operational in an older, now obsolete configuration
- > LHO 4k: not yet operational
- Noise impact: LHO 2k & LLO display no coherence between common and differential channels
 - Linear coupling is not a current limit
 - Doesn't rule out some non-linear coupling
- > Frequency coupling measured on LHO 2k: 300:1 rejection ratio! (100 Hz)

Frequency stabilization feedback configuration

- Recent innovation: once locked, eliminate length feedback to the end masses (CARM_CTRL) and to the mode cleaner (from the MC error signal)
 - MC length feedback still needed for acquisition, otherwise length fluctuations are essentially multiplied up by the arm:MC length ration, but once locked ...
 - MC frequency is slaved to that of the long arms at all frequencies below ~500 Hz

Effect of feedback change on differential mode noise

LIGO

LHO 4k: Development ground for new suspension controls (DSC)

- Why a new suspension controls system?
 - Coil driver design limitation:
 - Relatively large coil currents needed for mirror dc alignment and lock acquisition, but small currents to hold lock
 - Coil driver design made it impractical to reduce longitudinal control range after lock couldn't achieve the noise benefits of a smaller range
 - Local sensing & damping electronics, and coil drivers (including LSC & ASC input conditioning) made all on one board
 - Made changes very difficult to implement; more modularity desired
- Moved to a system with a digital processing core & more modular analog components
 - Much easier to implement & change digital filtering; low freq filters don't require big C's
 - Suspension signals digitally integrated with LSC/ASC
 - Alignment bias currents are generated and fed in independently of the feedback signals

Example of filtering benefit with DSC

- □ Force-to-pitch coupling inherent in suspension
 - Feedback forces produce pitch misalignment
 - Previously, could balance torques at one frequency: DC most important

Low frequency noise: dealing with DAC noise

- Dynamic range of test mass control signals exceeds that of the DAC:
 - ➤ (DC force/GW band acceleration x mass) = 3x10⁹ rtHz
 - ➤ 16-bit DAC (peak voltage/noise voltage) = 3x10⁵ rtHz
- Range mismatch accommodated with a post-DAC analog 'dewhitening filter'
 - Essentially a (very sharp) low-pass filter, to attenuate DAC noise in the GW band, where very little control range is needed
 - Currently 40-55 dB attenuation is achieved for f > 100 Hz, of which 30-40 dB is needed
 - Engaging the dewhitening filters
 - filters must be removed for lock acquisition: need full actuation range for ~100 Hz signals
 - Engaging while in lock is tricky: switching transients can throw it out
 - Ongoing effort to minimize the switching transients
- Lower noise DACs: Frequency Devices is developing for LIGO a VME DAC module with ~100x lower noise

Summary

■ What has been done

- > Significant noise improvements on LHO 2 & LLO over last 6 mths
- ➤ LHO 4k locking reasonably reliably
- Digital Suspension systems implemented
- > Stability improvements: optical lever stabilization, external preisolation
- Many improvements in electronics/software/training
 - Site operators playing a much bigger role in day-to-day running of interferometers

□ Some plans for near-term (only 4 mths between S1 & S2)

- Improved common mode servo on remaining 2 ifos
- Two more 2 D.O.F. preisolators for LLO
- Full wavefront sensor alignment control
- Digital suspension systems on remaining 2 ifos
- Continue automating procedures