

OVERVIEW AND PROGRESS
Rainer Weiss

DETAILS AND THE FUTURE
Peter Fritschel

LIGO Interferometer (Detector)

SCHEMATIC OF 2 KM INTERFEROMETER

Primary functions of the commissioning

- » After installation bring the interferometer, data acquisition and environmental monitoring system into operation
- » Improve the ability to hold lock and make it more robust
- » Reduce the noise in the interferometer
- » Determine correlations between interferometer and environment
- » Test the data acquisition system, diagnostic software and archiving
- » Train operators to acquire, run and diagnose the interferometer
- » Maintain technical communication between the Laboratory sites
- » Couple modeling with the diagnostic measurements

Commissioning strategy

- » Progression: Hanford 2km->Livingston 4km -> Hanford 4km
- » Operate and test all in vacuum sub-systems as soon as possible after pumpdown reduce water load on beamtubes and risk of contamination
- » Operate interferometers even if sub-systems are incomplete -shakedown
- » Assess the limiting noise terms and Iterate

Figure 1

The LSC Control Screen

Laboratorio Nazionale di Frascati (INFN) – May 30th , 2002

Sub-systems

- » Length and angle sensing and control
 - Control longitudinal degrees of freedom
 - Longitudinal and angular damping OSEMS
 - Optical lever monitor and active angular damping
 - Wavefront sensors for final alignment
- » Light frequency and amplitude control
 - nested frequency control loops:pre mode cleaner, reference cavity,
 - common mode of the interferometer laser to follow common mode
 - Intensity stabilization:around the laser, around mode cleaner
- » Light geometric control
 - Mode cleaner alignment and damping
 - Mode matching telescope stability and damping
 - Control of parasitic interferometers and scattered paths
- » Environment control : reduction in control dynamic range
 - Tidal servo common and differential mode
 - Microseismic feed forward system
 - Seismic noise reduction using external PZT controllers (Livingston)

LIGO Livingston 4km sensitivity vs time

LIGO Hanford 2km sensitivity vs time

LIGO Hanford 4km sensitivity vs time

Improvement in sensitivity and robustness

- » Key issue: maintain operating points against the large low frequency noise in the environment, electronics and the laser
- » Maintain linearity to avoid mixing the low frequency noise into the gravitational wave band
- » Necessary conditions to approach the fundamental noise terms: thermal noise, intrinsic phase noise of the light represented in the Science requirement
- » Periodic assessment of the limiting noise terms : gain redistribution and filtering to bring the system into a comfortable dynamic range of the measurement system
- » Special problems at Livingston with excess anthropogenic seismic noise – full interferometer operation restricted to nights – seismic retrofit using active external control – interim PZT control