

The knownpulsardemod DSO August 2002 LSC Update

PULG Session 08/23/02

Gregory Mendell LIGO Hanford Observatory

The knownpulsardemod DSO

- Runs under LDAS. Code is in LALWrapper CVS.
- Generates Short-time Fourier Transforms (SFTs).
- NEW: inputs SFTs, and ephemeris data from ilwd.
- NEW: wrote LALWRAPPERInitBarycenter to transfer ephemeris data from LDAS to LAL.
- Uses the LALDemod function to generate JKS F statistic for one set of source parameters.
- Writes to the SIGNAL_DPERIOD database table.
- NEW: also writes to the search summary and search summary variables tables; outputs F statistic in frame or ilwd format for a specified frequency band.

The JKS F Statistic

Jaranowski, Krolak, and Schutz gr-qc/9804014; Schutz & Papa gr-qc/9905018; Williams and Schutz gr-qc/9912029; Berukoff and Papa LAL Pulsar Package Documentation

$$F = \frac{4}{T} \frac{B |Y|^2 + A |Z|^2 - 2C \operatorname{Re}(YZ^*)}{D},$$

$$Y = \sum_{j=0}^{MN-1} x_j a_j e^{-i\Phi_{jb}} \Delta t, \qquad Z = \sum_{j=0}^{MN-1} x_j b_j e^{-i\Phi_{jb}} \Delta t,$$

$$A = (a \parallel a), \qquad B = (b \parallel b), \qquad C = (a \parallel b), \qquad D = AB - C^2$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \cos 2\psi & \sin 2\psi \\ \sin 2\psi & \cos 2\psi \end{pmatrix} \begin{pmatrix} F_+ \\ F_\times \end{pmatrix}, \qquad (x \parallel y) = \frac{2}{T} \sum_{j=0}^{MN-1} x_j y_j \Delta t$$

$$Y = \sum_{\alpha=0}^{M-1} a_{\alpha} Q_{\alpha} \sum_{k=k^*-K}^{k^*+K} X_{\alpha k}^{SFT} P_{\alpha k b} \Delta t, \qquad Z = \sum_{\alpha=0}^{M-1} b_{\alpha} Q_{\alpha} \sum_{k=k^*-K}^{k^*+K} X_{\alpha k}^{SFT} P_{\alpha k b} \Delta t.$$

E7 Update

- Loop scripts drove knownpulsardemod to generated SFTs for L1, H1, and H2.
- Scripts are checked into MDC CVS.
- NEW: E7 SFTs data are available from LDAS using getsftdata.tclsh script. (Need ligotools LDAS job package and LDAS password.)
- NEW: LDAS can read SFT data very quickly (1 days worth of data in 1 Hz band in < 60 seconds.)
- NEW: knownpulsardemod test jobs that produce the JKS F statistic have been run on E7 data.

LIGO

Goals before S1 (from last LSC conf.).

- Update knownpulsardemod DSO to work with latest LAL and LDAS code. (DONE.)
- Understand distribution of SNR and F statistic in Jaranowski, Krolak, and Schutz gr-qc/9804014. (Understand the case of pure gaussian noise.)
- Understand how to set upper limits. (Have thought very briefly about this.)
- Design and run knownpulardemod MDC tests for LALDemod. (SURF Student Brian Cameron worked on LALapps test code.)

Test Code Progress

- SURF student Brian Cameron wrote LAL-apps code to aid testing this summer.
- We worked on four basic tests:
 - Compared Brian's code vs. LALDemod.
 - Generated synthetic data sets to study the distribution of the F statistic.
 - Studied: "Is F the best estimator?"
 - Studied effective of windowing and side lobes on SNR.
- Much more work is needed.

Simple Test of LALDemod

• Brian Cameron's test code vs. LALDemod.

Distribution of the F Statistic.

- Note that F depends on $a(t)\exp[i\Phi(t)]$ and $b(t)\exp[i\Phi(t)]$.
- Note that a(t) and b(t) are proportional to $\sin(2\pi f_r t)$ and $\cos(2\pi f_r t)$, where f_r is the frequency of the Earth's rotation.
- Thus F depends on amplitudes of $sin(\Phi(t) \pm 2\pi f_r t)$ and $cos(\Phi(t) \pm 2\pi f_r t)$.
- For white noise this corresponds to 4 gaussian distributed random amplitudes; F can be written as the sum of the squares of linear combinations of these and thus follows a chi-squared distribution for 4 degrees of freedom.

Special Case

- If $\Phi(t) = 2\pi f_c t$, where f_c is the Nyquist frequency, the F statistic comes from $f_c \pm f_r$ bins which are aliased to each other.
- For this case and white noise, F depends on only 2 independent gaussian distributed random variables, not 4. Thus F follows a chisquared distribution for 2 degrees of freedom.

Special Case Nyquist Frequency, Distribution of F

• For pure noise we get the usual chi-squared with 2 degrees of freedom: $\rho(F) dF = 1/2\sigma^2 \exp(-F/2\sigma^2) dF$

Courtesy Brian Cameron

Special Case Nyquist Frequency, Distribution of $A = \sqrt{F}$

• For pure noise we get the usual Rayleigh distribution $\rho(A) dA = A/\sigma^2 \exp(-A^2/2\sigma^2) dA$

Courtesy Brian Cameron

General Case, Distribution of F

• For pure noise we get a chi-squared with 4 degrees of freedom: $\rho(F) dF = 1/4\sigma^4 F \exp(-F/2\sigma^2) dF$, as predicted.

Courtesy Brian Cameron

General Case, Distribution of $A = \sqrt{F}$

• For pure noise we get the expected distribution $\rho(A) dA = A^3/2 \sigma^4 \exp(-A^2/2\sigma^2) dA$

fit is $2436.323330 * A^2.694099 * exp(-A^2/2.170145)$

Courtesy Brian Cameron

LIGO

Is JKS F stat the best estimator?

- Should we track the amplitude and phase or just the phase?
- Generated signal at $\frac{1}{4}$ Nyquist frequency with large spindown and equiv of 10 days of data; SNR = max(A) with signal present divided by mean(A) when only noise is present.
- solid curve = no tracking, dot-dashed = track phase only, dotted = F stat tracks amp & phase = best. SNR $\sim \sqrt{T}$ for latter two, though this is not obvious from the graph.
- Differences are due to leakage into side lobes.

Courtesy Brian Cameron

Side lobes in JKS F Statistic

Courtesy Brian Cameron

Special case without amplitude tracking

Courtesy Brian Cameron

General case with amplitude tracking = F statistic

LIGO

Courtesy Brian Cameron

General case without amplitude tracking

Courtesy Brian Cameron

Effective Windowing of Data

Leakage Due to Windowing

Sample Result from E7

- Produced by knownpulsardemod LDAS job in less than 2 minutes. Anyone with LDAS password can run jobs to get data like this.
- Warning: code is untested!

LIGO-G020332-00-W

Data Quality and Dropout

- Clean locks are used to generate a quality channel.
 Poor quality data is "padded" (replaced) with the mean of the good quality data. The percent of the data padded is stored in the SFT history structure.

 NEW: percent clean lock for S1 SFTs will be stored in search summary vars database table.
- Data dropout code is not yet working. SFTs are missing for drop outs during E7. SAME will be true for S1.

knownpulsardemod MDC

- Held November 27-30 at LHO.
- In DCC: LIGO-T020014-00-W
- Primarly Tested SFT generation.
- MDC scripts and documentation are in UWM mdc CVS repository.
- NEW: need another MDC to test new code, before S1 data can be analyzed with confidence.
- Code needs to be debugged first.

Example Test

TEST 2a Correctness of SFT output

Purpose: Test that data with kno	2 V	SO are indeed the DFT of the input data for input
Tester:	Date & Time:	Tester Location:
Job Site:	Job Datab	ase:
Job Channel:	Job Log Fi	le:
Instructions: (See	the "How to run the test script	s" section if you need help.)
Use RunJob.tclsh to	run the jobs below, perform t	he task indicated, and record the results.
_	•	pulseN32I16-600000000-1.gwf, which contains 32 se in the 16^{th} data point (index = 15).
MDC output		will be an xml file. Ftp the result to the KPD name. Check that the results agree with that in
LDAS Job a	#:	Pass/Fail