

GaAs Based High-Power Photodiodes for Advanced LIGO LIGO-G020370-00-Z

David Jackrel, PhD Candidate Dept. of Materials Science and Engineering Advisor: James S. Harris

> LSC Conference, LHO August 19th-22nd, 2002

Parameter	LIGO I	Advanced LIGO
Steady-State Power	0.6 W	~1 W
Modulation Frequency	< 29 MHz	100 kHz ~ 180 MHz
Quantum Efficiency	> 80%	> 90%
Laser Wavelength	1064nm	1064nm
Detector Design	Bank of 6(+) PDs	1 PD

Harris Group **Rear-Illuminated PD Advantages** Solid State Lab

Conventional PD

Adv. LIGO Rear-Illuminated PD

STANFORD

1um

>100um

STANFORD

Popt (mW)

Plasma Etching

 \rightarrow Ar, BCl₃, Cl₂

Polyimide Spinning

 $\rightarrow Cresol-novolak Resin (AZ 9260 PR)$

STANFORD

STANFORD

λ GaInNAs

- λ 2-micron I-Layer
- **λ** Etching and Passivating

λ InGaAs

- **λ** Thinned Substrate
- **λ** Etching and Passivating

λ RF Setup

λ High Power Voltage Source