

Advanced LIGO R & D: Sapphire Status Report

Dave Reitze University of Florida for the Core Optics Working Group

Rationale for Sapphire Test Masses

- Mechanical and thermal properties of sapphire superior to fused silica
 - » at 100 Hz, thermal noise much better then fused silica:
 - mechanical Q ~ 2×10^8 (compare fused silica Q ~ 10^7)
 - » dense, high thermal conductivity & sound speed
 - **» SUPERIOR ASTROPHYSICS REACH**
- The price to pay
 - » absorption greater than fused silica
 - » thermo-elastic noise greater than fused silica
 - » very hard material --> difficult to polish
 - » uni-axial crystalline structure --> birefringence

Sapphire 101

- Al₂O₃ Crystal Structure: Trigonal
- Density: 3.97 gm/cm³
 - » compare fused silica: 2.20 gm/cm²
- Thermal conductivity (300 K):
 - **κ = 40 W/m K**
 - » increases to $2x10^5$ W/m K at 25 K
 - » compare fused silica: 1.38 W/cm K
- Thermal expansion (300 K):
 - α = 8.8 x 10⁻⁶ / K
 - » compare fused silica: 0.55 x 10⁻⁶ / K
- Figure of merit: κ/α (10⁻⁶ m/W)
 - » sapphire: **4.5**
 - » fused silica: 2.5

Requirements for Advanced LIGO

P. Fritschel, et al., LIGO T010075-00

Mass	40 kg
Physical dimension	31.4 cm x 13 cm
Optical homogeneity	< 10 nm rms
Microroughness	< 0.2 nm rms
Internal scatter	< 20 ppm/cm
Absorption	< 20 ppm/cm
Thermal noise	$Q > 2 \times 10^8$
Birefringence	< 0.1 rad
Polish	< 1 nm rms

Size and Homogeneity

• Larger mass driven by:

- » radiation pressure ("Unified Quantum Limit")
- » thermo-elastic noise (worse in sapphire!!): δx(f) ~ 1/w^{3/2}; w=waist
- homogeneity driven by:
 - » arm cavity loss
 - » homogeneity is axisdependent

Fritschel, et al., LIGO T010075-00

LIGO Scientific Collaboration

NBI Range vs. Mass

<u>Status:</u>

•Size - <mark>OK</mark>

•40 kg mass can be grown by CSI

•314 mm x 130 mm piece to be delivered to LIGO Lab in October

- Homogeneity OK (almost)
 - techniques include spot polishing, fluid polishing, ion-beam etching
 - •< 14 nm rms measured on large m-axis material; reports of <10 nm by Goodrich; 55 Å microroughness</p>
 - still need to clarify m- vs a-axis homogeneity
 - microroughness < 1 Å on small ion-beam etched pieces by CSIRO (nice technique, but \$\$)

Scatter and Absorption

• Internal Scatter driven by:

- » ITM + BS scatter --> power recycling cavity loss
- » potential light scatter into asymmetric port PD (mitigated by output mode cleaner)

• Absorption driven by:

thermal lensing in ITM substrate
 ---> loss of sideband power in
 power recycling cavity

"Bad" sapphire

J. Li, D. Blair, UWA

"Rosetta" Sapphire

R. Route, M. Fejer, Stanford

LIGO Scientific Collaboration

Status:

•Scatter - GUARDED

- qualitative data "looks good"
- no easy knobs to turn elsewhere to correct (some trade-off with absorption possible, but...)
- quantitative data and statistics pending
- Absorption GUARDED
 - 10 ppm/cm (requirement) seen in isolated small substrates from CSI
 - 30-40 ppm/cm is the norm
 - process and materials characterization on going:
 - •annealing methods under investigation
 - impurity species, concentrations under investigation
 - adaptive thermal compensation may mitigate requirement

Polishing

LIGO Scientific Collaboration

Polishing <u>Status:</u>

•Polishing - OK

LIGO

- 1 nm rms demonstrated by CSIRO on 120 mm substrates
- 1.5 Å < microroughness after polishing
 - note: no homogeneity compensation

Birefringence

• Stress Birefringence driven by:

- » polarization rotation in the ITM leads to loss on the BS and possible arm cavity power imbalance
- » stress birefringence intrinsic to crystals
- Thermal birefringence due to heating
 - » photo-elastic effect

Birefringence Status:

• Stress Birefringence - OK (almost)

LIGO

- LIGO Lab metrology show low birefringence, but measurements limited by homogeneity
- effect of suspension points unknown
- Thermal Birefringence UNKNOWN
 - needs testing at laser powers comparable to Advanced LIGO power recycling
 - Gingin High Power Test Facility

Thermal Noise

• Thermal noise driven by:

- » ASTROPHYSICS REACH at 100 Hz
- internal friction, thermo-elastic damping play a role
- Thermal noise compromised by addition of optical coating
 - » affects fused silica, too
- LIGO Lab Thermal Noise Interferometer program to determine sapphire noise

E. Black, S. Rao, and K. Libbrecht

Thermal Noise Status:

• Thermal Noise - GUARDED

LIGO

- requisite Q's measured on small substrates
 - need measurements on large substrates
- coating compromise under intense investigation
- TNI should confirm thermal displacement noise

LIGO Meeting the Requirements for Advanced LIGO

Mass	OK
Physical dimension	OK
Optical homogeneity	(OK)
Microroughness	(OK)
Internal scatter	GUARDED
Absorption	GUARDED
Thermal noise	GUARDED
Birefringence	(OK)
Polish	OK

Summary and Future

• Guardedly optimistic about pursuing sapphire

- » 'improvement gradient' positive on most problematic issues – absorption?
- » not too many more possibilities for unpleasant surprises
- » coating problem is troublesome, but becoming more understood every day
- Advanced LIGO test mass material down select slated for December 2002
 - » still on schedule
 - 'down select' committee selection underway
 - » would be nice to know more, but can make an informed decision