

Optics in VIRGO

VIRGO Status

Injection Sytem in Virgo

Selected topics in Frequency stabilization

François BONDU bondu@obs-azur.fr VIRGO CNRS – Observatoire de la Côte d'Azur, Nice September 2002 LIGO-G020425-00-Z

Setup overview Sensitivity (m/√Hz) Reliability Details (servo loops, suspensions, etc.)

VIRGD

Setup in June and July 2002

Digital filter used to lock PR

(design Jean-Pierre Coulon)

Bode diagram

Nichols diagram

Engineering Run #4, July 12-15 2002

Engineering Run #4, July 12-15 2002

Power in recycling cavity Vs time (3 days)

- 5 unwanted losses of lock (similar to previous runs)
- lock acquisition longer than before \Rightarrow duty cycle $\sim 80\%$

VIRGO Central Interferometer Sensitivity Progress

VIRGO status / Summary

Commissioning of central interferometer is finished (injection system 10 W, full suspensions, data acquisition system, interferometer control...)

20 W laser to be installed on site end of sept. 2002

First long arm cavity to be commissioned this fall

End of commissioning foreseen for end 2003.

Injection system

All functions demonstrated to work, almost within Virgo specifications

- laser beam
- suspensions inertial damping and local controls
- alignments
- filtering with a long Mode Cleaner cavity
- stabilizations (power, frequency, position)

--: digital control

10 W Laser bench se

10 W Laser bench setup (Frédéric Cleva)

15

Injected Laser Performances

- Master Laser 700 mW, Slave Laser 11 W
- Injection bandwidth 100 kHz
- 11 W, mono-mode, single-frequency
- In operation since July 1999
- > 7000 hours of operation
- remote monitoring

Power Stabilization

17

Input Mode Cleaner

MC parameters Measurement

Finesse	1120 +/- 10	Cavity decay time	Expected: 1000; excess of 2380 ppm losses
Contrast in reflection	79 %		
Transmission	33 %	Ptransmitted/Pincident	
Coupling on 02 + 20 modes	7 %	Measurement of transmitted power	
Round trip length	285,46 +/- 0,3 m	Notch in TF at f=FSR	
Curvature	186,5 +/- 0,4 m	Notch in TF at 356 kHz	

Injection system

All functions demonstrated to work, almost within Virgo specifications, High reliability of the laser system

•More on laser frequency specs: see 3rd part

- To be fixed:
- Back scatter of light in mode cleaner
- transmission of the mode cleaner
- automatic lock acquisition
- mode cleaner length noise

Frequency stabilization

Design of feedback for the virgo interferometer

Design of efficient and stable servo loops

« optical transfer function »

CARM sensing for LHO-4K

Design of efficient digital filters

Programm CROSSXP, by Jean-Pierre COULON:

X = filter order

Enter required phase and gain margin,

Enter band (wrt unity gain) over which high attenuation is required

=> Finds a « good filter » (depends on the starting seed)

Example of filter (worked successfully)

Bode plot

Attenation at 10*UG = 4000Gain at UG/10 = 8000

Frequency stabilization spec

- Unity gain of « Common Mode » servo has to be less than Free Spectral Range of long Fabry Perot cavity
- (something « bad » happens at f = FSR ??)
- Specs for prestabilization stage
 - = specs for light entering ITF / common mode loop gain

Optical transfer function

• Definition:

Optical transfer function

Photodiode demodulated current

Frequency noise

STF: MATLAB model of interferometer to study sensing function

« object oriented », computes compound optical objects reflectivities and/or transmissions, and then optical transfer function.

Ex. Of a simple FP cavity

27

TF for frequency stabilization

VIRGO Transfer function between frequency noise and demodulated signal in phase on D2

Design of correction filter

Design of correction filter:

Zeros: f=2.3 kHz, Q=2 f=2.3 kHz, Q=2

Poles: f=10 Hz, Q=2 f=10 Hz, Q=2

OPEN LOOP TRANSFER FUNCTION

Overall loop: stable, gain margin 2.7, phase margin 70 degrees

New reference solution

LIGO4K common mode sensing

TRANSFER FUNCTION, used « as is », UG = 6 kHz

10⁴ 10³ 10^{2} 10 magnitude 0 🗙 5 kHz X 10 kHz 15 kHz 20 kHz 10 10⁻² 10⁻³ 10⁻⁴_____ -900 -720 -540 -360 -180 0 Angle (degrees)

LIGO Sensing function for CARM

Bode plot

Nichols plot

Difficult to achieve high unity gain for common mode servo

=> specs for prestabilization stage (MC for Virgo) higher

... If modulation frequency (Virgo) is switched from 6 to 18 MHz, then bandwidths of few 100's kHz possible !! (LIGO4K : window at 40 MHz).

Conclusions

- Phase of "central interferometer" is finished.
- VIRGO Injection system: some issues to be fixed. Change of topology w/ respect to frequency stabilization.
- Frequency stabilization: tough to make a high bandwdith « CARM »; specs for frequency prestabilization higher.
- Would be nice to check the sensing function of the interferometer...

((O)) VIRGD

Co-workers

Nice group:

Nary Man Alain Brillet François Bondu Eric Chassande-Mottin Hervé Trinquet (Ph.D.) Frédéric Cleva Magali Loupias Henrich Heitmann Jean Cachenaut Jean-Pierre Coulon Jean-Yves Vinet

And :

Pisa group (suspension, vacuum) Orsay group (Control-command) Annecy group (vacuum tanks, DAQ) Napoli group (environment monitoring) Roma group (marionettas) Lyon and Paris groups (mirrors)