Stress-strain behaviour of MoRuB glassy metals

Stefano Tirelli Undergraduate student University of Pisa Italy

ChenYang Wang Graduate Student Caltech Now at University of Stanford

LIGO-G020441-00-R

Laser Interferometer Gravitational-Wave Observatory

Physical properties studied

- Young's Modulus
 - Mechanical hysteresis
- Yield Point
 - High yield point allows THINNER suspensions and less energy dissipation
- Structural modifications
 - Shear bands
 - Crack propagation (upcoming)

How to study stress/strain of MoRuB?

Load frame, operational setup

Load frame and cell courtesy of Robert Rogan, Materials Science

LIGO Laboratory at Caltech

How to measure stress?

Micro Load Cell, maximum load 1000lbs (oversized!)

Wheatstone-bridge based

Present resolution ~ 50 grams

LVDT: Linear Variable Differential Transformer

LIGO

Custom designed micro-LVDT and holders

Current flow

Differential measurement = high resolution, rejection of noise

LIGO

Linear regime:

Present resolution: 15nm

The stress/strain chart

Stress/strain chart for MoRuB

First cycles: low load

Displacement (microns)

LIGO Laboratory at Caltech

Stress/strain curves for MoRuB

Why low values for yield point?

Young's modulus:

Boron 16: 174 GPa

Error: ~15% mainly due to poor thickness Measurement. Solution: precision-micrometer Upcoming.

Non-uniformity of stress: effective crosssection is LOWER than the measured one. **Solution:** self-aligning swivel holders (already in production):

Yield point (lower limit!):

Boron 16: 1.34 Gpa

(upper limit: 5.2GPa)

Why low values for yield point?

Nucleation of cracks. To take good measurements we need regular borders without weak point for crack nucleation:

EDM Cut Local melting Possible formation Of crystals on edges

Scissor cut: Very irregular and unreliable! Electropolished cut: The best!

Nucleation of cracks causes premature failure of the material!

Structural effects of stress: shear bands

LIGO

Who knows about shear bands? I don't, but they're nice.

What needs to be done:

•Testing on electropolished samples to obtain a value close to the one calculated by Vicker hardness test (5.2GPa).

- •Study of crack propagation.
- Poisson's modulus.

•Observation of shear bands during formations: load frame is designed to fit into an SEM casing.

Thanks to

Riccardo DeSalvo - Mentor

Prof. Francesco Fidecaro - University of Pisa

ChenYang Wang - Graduate Student, LabMate Hareem Tariq - Graduate Student

Prof. William Johnson

Robert Rogan - Materials Science Michael Hall Brian Emmerson Eric Kort Maddalena Mantovani Barbara Simoni