

Advanced LIGO

David Shoemaker PAC 5 December 2002

Advanced LIGO

LIGO mission: detect gravitational waves and

initiate GW astronomy

- Next detector
 - » Must be of significance for astrophysics
 - » Should be at the limits of reasonable extrapolations of detector physics and technologies
 - » Should lead to a realizable, practical, reliable instrument
 - » Should come into existence neither too early nor too late
- Advanced LIGO:
 - 2.5 hours = 1 year of Initial LIGO
 - » Volume of sources grows with cube of sensitivity
 - » ~15x in sensitivity; ~ 3000 in rate

Anatomy of the projected Adv LIGO detector performance

- Internal thermal noise
- Newtonian background, estimate for LIGO sites
- Seismic 'cutoff' at 10 Hz
- Unified quantum noise dominates at most frequencies for full power, broadband tuning
- NS Binaries: for two LIGO observatories,
 - » Initial LIGO: ~20 Mpc
 - » Adv LIGO: ~300 Mpc
- Stochastic background:
 - » Initial LIGO: ~3e-6
 - » Adv LIGO ~3e-9

Baseline Plan

- Initial LIGO Observation 2002 2006
 - » 1+ year observation within LIGO Observatory
 - » Significant networked observation with GEO, LIGO, TAMA
- Structured R&D program to develop technologies
 - » Conceptual design developed by LSC in 1998
 - » Cooperative Agreement carries R&D to Final Design, 2005
- Proposal late 2002 for fabrication, installation
- Long-lead purchases planned for 2004
 - » Sapphire Test Mass material, seismic isolation fabrication
 - » Prepare a 'stock' of equipment for minimum downtime, rapid installation
- Start installation in 2007
 - » Baseline is a staged installation, Livingston and then Hanford
- Start coincident observations in 2009

Adv LIGO: Top-level Organization

- Scientific impetus, expertise, and development throughout the LIGO Scientific Collaboration (LSC)
 - » Remarkable synergy
 - » LIGO Lab staff are quite active members!
- Strong collaboration GEO-LIGO at all levels
 - » Genesis and refinement of concept
 - » Teamwork on multi-institution subsystem development
 - » GEO taking scientific responsibility for two subsystems (Test Mass Suspensions, Pre-Stabilized Laser)
 - » UK and Germany planning substantial material participation
- LIGO Lab
 - » Responsibility for Observatories
 - » Establishment of Plan for scientific observation, for development
 - » Main locus of engineering and research infrastructure

...now, where are we technically in our R&D program?

Pre-stabilized Laser

Require optimal power, given fundamental and practical constraints:

» Radiation pressure: dominates at low frequencies

» Thermal focussing in substrates: limits usable power ***************

» Initial LIGO: 10 W

- Coordinated by Univ. of Hannover/LZH Three groups pursuing alternate design approaches to a 100W demonstration
 - Master Oscillator Power Amplifier (MOPA) [Stanford]
 - Stable-unstable slab oscillator [Adelaide]
 - Rod systems [Hannover]
- » All have reached 'about' 100 W, final configuration and characterized are the next steps
- » Concept down-select December 2002 → March 2003
- » Proceeding with stabilization, subsystem design

LIGO Laboratory

Input Optics

- Subsystem interfaces laser light to main interferometer
 - » Modulation sidebands applied for sensing system
 - » Cavity for mode cleaning, stabilization
 - » Mode matching from ~0.5 cm to ~10 cm beam
- Challenges in handling high power
 - » isolators, modulators
 - » Mirror mass and intensity stabilization (technical radiation pressure)
- University of Florida takes lead
- Design is based on initial LIGO system.
- Design Requirements Review held in May 2002: successful
- Many incremental innovations due to
 - » Initial design flaws (unforeseeable)
 - » Changes in requirements LIGO 1 → LIGO II
 - » Just Plain Good Ideas!
- New Faraday isolator materials: 45 dB, 100 W
- Thermal mode matching
- Preliminary design underway

Sapphire Core Optics

- Focus is on developing data needed for choice between Sapphire and Fused Silica as substrate materials
 - » Sapphire promises better performance, lower cost; feasibility is question
- Progress in fabrication of Sapphire:
 - y 4 full-size Advanced LIGO boules, 31.4 x 13 cm, grown
 - » Delivery in December 2002 destined for LASTI Full Scale Test optics
- → Homogeneity compensation by polishing: RMS 60 nm → 15 nm (10 nm required)

- Progress needed in mechanical loss measurements, optical absorption
- Downselect Sapphire/Silica in March-May 2003

Coatings

- Evidently, optical performance is critical
 - » ~1 megawatt of incident power
 - » Very low optical absorption (~0.5 ppm) required and obtained
- Thermal noise due to coating mechanical loss also significant
- Source of loss is associated with Ta2O5, not SiO2
 - » May be actual material loss, or stress induced
- Looking for alternatives
 - » Niobia coatings optically ok, mechanical losses slightly better
 - » Alumina, doped Tantalum, annealing are avenues being pursued
- Need ~10x reduction in lossy material to have coating make a negligible contribution to noise budget – not obvious

Active Thermal Compensation

- Removes excess 'focus' due to absorption in coating, substrate
- Two approaches possible, alone or together:
 - » quasi-static ring-shaped additional heat (probably on compensation plate, not test mass itself)
 - » Scan (raster or other) to complement irregular absorption
- Models and tabletop experiments agree, show feasibility
- Indicate that 'trade' against increased sapphire absorption is possible
- Next: development of prototype for testing on cavity in ACIGA Gingin facility

Isolation: Requirements

- Requirement: render seismic noise a negligible limitation to GW searches
 - » Newtonian background will dominate for >10 Hz
 - » Other 'irreducible' noise sources limit sensitivity to uninteresting level for frequencies less than ~20 Hz
 - » Suspension and isolation contribute to attenuation
- Requirement: reduce or eliminate actuation on test masses
 - » Actuation source of direct noise, also increases thermal noise
 - » Seismic isolation system can reduce RMS/velocity through inertial sensing, and feedback
 - » Acquisition challenge greatly reduced
 - » Choose to require RMS of <10^-11 m</p>

Isolation I: Pre-Isolator

- Need to attenuate excess noise in 1-3 Hz band at LLO
- Using element of Adv LIGO
- Aggressive development of hardware, controls models
- Prototypes in test
 - » First servoloops closed on electromagnetic variant
 - » Hydraulic variant in installation
- Dominating Seismic Isolation team effort, until early 2003

LIGO Laboratory

Isolation II: Two-stage platform

- Choose an active approach: high-gain servo systems, two stages of 6 degree-of-freedom each
 - » Allows extensive tuning of system after installation, different modes of operation, flexible placement of main and auxiliary optics on inertially quiet tables
- Stanford Engineering Test Facility Prototype coming on line
 - » Mechanical system complete
 - » Instrumentation being installed for modal characterization
- The original 2-stage platform continues to serve as testbed in interim
 - » Recent demonstration of sensor correction and feedback over broad low-frequency band

Suspensions

- Design based on GEO600 system, using silica suspension fibers for low thermal noise, multiple pendulum stages for seismic isolation
- PPARC proposal: significant financial and technical contribution; quad suspensions, electronics, and some sapphire substrates
 - » U Glasgow, Birmingham, Rutherford Appleton
- Success of GEO600 a significant comfort
- A mode cleaner triple suspension prototype now being built for LASTI Full Scale Test
- Both fused silica ribbon and dumbbell fiber prototypes are now being made and tested
- Challenge: developing means to damp solid body modes quietly
 - » Eddy current damping has been tested favorably on a triple suspension
 - » Interferometric local sensor another option

GW readout, Systems

- Responsible for the GW sensing and overall control systems
- Addition of signal recycling mirror increases complexity
 - » Permits 'tuning' of response to optimize for noise and astrophysical source characteristics
 - » Requires additional sensing and control for length and alignment
- Glasgow 10m prototype, Caltech 40m prototype in construction, early testing
 - » Mode cleaner together and in locking tests at 40m
- Calculations continue for best strain sensing approach
 - » DC readout (slight fringe offset from minimum) or 'traditional' RF readout
 - » Hard question: which one shows better practical performance in a full quantummechanical analysis with realistic parameters?
- Technical noise propagation also being refined
- Chance that some more insight into quantum/squeezing can be incorporated in the baseline (or in an early upgrade)

Technical challenges (dhs view)

- In order of concern:
- PSL: selection of power technology
- IO: handling high power (thermal focussing issues, aperture)
- Readout/Control: optimization of quantum noise
- Thermal Compensation: prototype test on cavities
- Seismic Isolation: performance of complete system; schedule
- Suspensions: low-noise damping system
- Core Optics/Test Masses: selection of Sapphire/Fused Silica
- Coatings: Development of low-mechanical-loss coatings

Advanced LIGO: History

- Lab & LSC submitted White Paper and Conceptual Project Book in late 1999
- Requested MRE funding in FY2002 to commence support of increased and vigorous R&D
- Planned to install in the vacuum system in 2005
- Cost about \$114 million (FY2000) without accounting for contributions from operations budget and international partnerships
- Peoples panel gave favorable review
- NSF decision to support R&D through design from operating funds (R&RA) in renewal (2002-2006) proposal

Timing of submission

- Detecting gravitational waves is compelling, and Advanced LIGO "appears" crucial
 - » to detection if none made with initial LIGO
 - » to capitalizing on the science if a detection is made with initial LIGO
- Delaying submission likely to create a significant gap in the field at least in the US
 - » Encouragement from both instrument and astrophysics communities
- Our LSC-wide R&D program is in concerted motion
 - » Appears possible to meet program goals
- We are reasonably well prepared
 - » Reference design well established, largely confirmed through R&D
 - » Cost estimate and schedule plan coming together with a burst of effort
- Timely for International partners that we move forward now

GEO Role in Advanced LIGO

- GEO is in LSC
- UK groups (Glasgow, Birmingham, RAL) have submitted project funding proposal for ~\$12 million to fund:
 - » Delivery of suspensions
 - » Delivery of some sapphire substrates (long lead purchases)
 - » Proposal assumes UK funds start 1Q04
- German group will also submit project support proposal
 - » Baseline plan is to cover delivery of installed/spare Pre-Stabilized Lasers

The Process

- Initial LIGO must have successful S1 and S2 runs
 - » Produce results
 - » Make good interferometer progress
- Prepare text for proposal
 - » Stability of concept makes this relatively easy
- Prepare cost/schedule for proposal
 - » Most subsystems completed to excruciating detail
 - » MRE proposal must be ≥10% of division budget -- ~\$110 M
 - » Within range of (total cost)
 - -- (UK+German proposed contribution) present R&D operations support
- Work with Tom Lucatorto, Bev Berger, Joe Dehmer
- NSF leadership must be thoroughly briefed and supportive
- FY2003 funding for LIGO operations must be good
- When we submit, we have to be confident of success

Upgrade/Proposal Options

- Incremental improvements to initial LIGO
 - » Pre-isolator a bit in this mold but only helps reach original goal
- Phased Upgrades
 - » High power first (laser, modulation/isolation, thermal compensation)
 - » Separate addition of signal recycling
 - » Low frequency first (most logical phasing choice hugely invasive)
 - -- all waste considerable time and money w.r.t. full Advanced LIGO
- Interferometer count
 - » 3 IFOs
 - » 2 IFOs
 - -- a more interesting question: best long-term Astrophysics?
- MRE account vs. program funds
- Proposal coordinated or jointly submitted by LIGO/LSC/GEO/ACIGA

Advanced LIGO

- A great deal of momentum and real technical progress in every subsystem
- No fundamental surprises as we move forward; concept and realization remain intact with adiabatic changes
- Responsible progress in initial LIGO commissioning and observation
- Plan on submission January 2003, targeting observations in 2009