

Advanced LIGO High-Power Photodiodes

David Jackrel, PhD Candidate Dept. of Materials Science and Engineering Advisor: James S. Harris

LSC Conference, LLO March 17th-21st, 2003

LIGO-G030069-00-Z

Introduction

High-Power Results

High Efficiency Process

• Predictions

Parameter	LIGO I	Advanced LIGO
Steady-State Power	0.6 W	~1 W
Operating Frequency	< 29 MHz	100 kHz ~ 180 MHz
Quantum Efficiency	> 80%	> 90%
Detector Design	Bank of 6(+) PDs	1 PD

Harris Group Bolid State Lab Heterojunction Band Gap Diagram

Bolid State Lab Rear-Illuminated PD Advantages

Conventional PD

Adv. LIGO Rear-Illuminated PD

Harris Group Golid State Lab High Efficiency Detector Process (1)

1. Deposit and Pattern P-Contact

4. Flip-Chip Bond

2. Etch Mesa – H₂SO₄:H₂O₂:H₂O and Passivate in (NH₄)₂S+ **STANFORD**

3. Encapsulate Exposed Junction

- N+ GaAs Substrate - Epitaxial Layers - Au Contacts - Polyimide Insulator - SiN_x AR Coating - AIN Ceramic

Diameters	3mm	4.5mm	150um
Saturation Power			
Devices	Old	New	New
	300mW	~1W	~2mW
Bandwidth			
Devices	Old	New	New
	3MHz	~1MHz	~1GHz

High-Power Results

- 300mW (@ 3MHz B.W.)
- 60% External Efficiency
- High-Efficiency Process
 - < -30 Volts realized (on un-mounted devices)
 - Working out processing

Predictions (by Next LSC...)

- 1 Watt (@ 1MHz B.W.)
- 90% External Efficiency

N Plasma Source

Atomic source of nitrogen needed \rightarrow Plasma Source!

- Effusion cells for In, Ga, Al
- Cracking cell for As
- Abrupt interfaces
- Chamber is under UHV conditions to avoid incorporating contaminants
- RHEED can be used to analyze crystal growth in situ due to UHV environment
- T=450-600°C

- Large E-field in Iregion
- Depletion Width ≈ Width of I- region
 - RC time constant
 - $\approx R_s C_J$ $C_J = K_s \varepsilon_0 A / W_I$
 - Absorbs a specific λ

Full Structure Simulated by ATLAS

Harris Group

Quantum Efficiency vs. Bias vs. Optical Power Unfocused Beam, InGaAs Device

Solid State Lab Surface Passivation Results (2)

