Statistical Issues in Upper Limit Setting: Stochastic Background

John T. Whelan

Loyola University New Orleans

jtwhelan@loyno.edu

Presented at the 12th LSC Meeting 2003 March 19

G030099-00-Z

What We Calculate

- M jobs, each split into 10 segments of T = 90 sec each
- Measurement of correlations, scaled to represent Ω_{GW} :

$$\mathcal{Y}_{IJ} = \frac{1}{T} \int \tilde{h}_1^* \, Q \, \tilde{h}_2 \, df$$

Average & std dev for Ith job:

$$\bar{y}_I = \frac{1}{10} \sum_{J=1}^{10} y_{IJ}$$
 $S_I = \sqrt{\frac{1}{9} \sum_{J=1}^{10} (y_{IJ} - \bar{y}_I)^2}$

Point estimate and std error for whole run (weighted avg):

$$\mathcal{Y} = \frac{\sum_{I=1}^{M} \lambda_I \bar{\mathcal{Y}}_I}{\sum_{I=1}^{M} \lambda_I} \qquad \mathcal{S} = \frac{1}{10} \frac{\sqrt{\sum_{I=1}^{M} \lambda_I \mathcal{S}_I^2}}{\sum_{I=1}^{M} \lambda_I}$$

2-Sided Frequentist Confidence Interval

- Value-neutral expression of overall meas & its statistical spread:
- Combined statement about "real" Ω_{GW} & instrumental Ω_{inst}

$$\mathcal{Y} - 1.65 \mathcal{S} \leq \Omega_{\text{inst}} + \Omega_{\text{GW}} \leq \mathcal{Y} + 1.65 \mathcal{S}$$

- "Safe" because
 - 1. Ω_{inst} could be negative
 - 2. positive lower limit not a "detection"

How to Set an Upper Limit?

• If we believe $\Omega_{\text{inst}} \ll S$, 90% frequentist UL is

$$\Omega_{\rm GW} \leq \mathcal{Y} + 1.28 \mathcal{S}$$

- Problems:
 - What does a negative value mean?
 (Means our assumptions are probably wrong!)
 - 2. Substantial Ω_{inst} obscures physical results

$$\Omega_{\text{GW}} \leq \mathcal{Y} - \Omega_{\text{inst}} + 1.28 \mathcal{S}$$

 \longrightarrow Need more information to gauge impact of Ω_{inst}

Sources of information on Ω_{inst}

- Large time shifts:
 - For non-coloc detectors, shift by many \times light travel time
 - most sources of Ω_{inst} should still be there
 - \longrightarrow mean or std dev of time-shifted ${\mathcal Y}$ measurements can set bounds on Ω_{inst} at zero time lag
- Small time shifts:
 - Equiv to careful look at freq domain behavior of CC integrand
 - Can use to set something like a χ^2 veto
- Should calibrate this procedure with Monte Carlo simulations

Current Prescription (for S1)

- 1. Set straightforward two-sided limit on $\Omega_{GW} + \Omega_{inst}$
- 2. Decide if Ω_{inst} significant (time shifts, anomalous \mathcal{Y})
 - If no, set straightforward upper limit on Ω_{GW}
 - ullet If yes, set no upper limit on Ω_{GW}

Currently exploring estimates of significant Ω_{inst} for future searches