Overview of Calibration Use in Astrophysical Searches

Jolien Creighton

University of Wisconsin-Milwaukee Subsession on Use of Calibration Info in Astrophysical Searches and Effects of Calibration Errors

Review of Calibration

- * Sensing function: C(f) (units ct/strain)
- * Servo gain: G(f) (units ct/ct)
- \diamond Actuation function: A(f) (units strain/ct)
- Open loop gain: H(f) (units ct/ct)
- * Response function: R(f) (units strain/ct)

$$H(f) = C(f)G(f)A(f)$$

$$R(f) = \frac{1 + H(f)}{C(f)}$$

Calibration Drift

- ❖ Change in alignment: C(f) → $\alpha C(f)$
- ❖ Change in servo gain: G(f) → $\beta G(f)$
- * Reference calibration: $C_0(f), H_0(f), R_0(f)$
- Calibration lines used to monitor drift:

$$C(f) = \alpha C_0(f)$$

$$H(f) = \alpha \beta H_0(f)$$

$$R(f) = \frac{1 + \alpha \beta H_0(f)}{\alpha C_0(f)} = \frac{1 + \alpha \beta (C_0(f)R_0(f) - 1)}{\alpha C_0(f)}$$

Calibration Data

S1 Run:

- Reference spectra in frame files and ILWD files: generated by hand
- Calibration factors in frame files and ILWD files: generated by hand

S2 Run:

- Reference spectra in frame files and ILWD files: generated by hand
- Calibration factors in frame files: computed by SenseMonitor

LAL Calibration Functions

- LAL Library Functions: (package tools)
 - » LALUpdateCalibration(): updates reference spectra given current values of calibration factors
 - » LALResponseConvert(): interpolates/inverts/scales
 response function to get in desired form
- LALWrapper Functions:
 - » LALExtractResponse(): automatically extracts reference spectra and calibration factors from wrapper's inPut structure and interpolates/scales/inverts it to required form
 - » Search code must get calibration data from frame files or response ILWD files (-framequery or -responsefiles options to LDAS dataPipeline command respectively)

LDAS Calibration Functions

- dataconditionAPI Function:
 - » respfilt(): applies a transfer function (or response function) to input series; transfer function is computed using reference spectra and updated with calibration factors
 - » dataconditionAPI must get calibration data from frame files only (these ILWD calibration files can't be imported into dataconditionAPI for any purpose other than to pass to the wrapperAPI)

Making Calibration Files

Calibration data is available at:

```
http://blue.ligo-wa.caltech.edu/engrun/Calib_Home
http://www.ligo-la.caltech.edu/~irish/S2/calibration
```

- » Files are in ascii format
- » S1 has spectra and factors; S2 has spectra only (factors are computed by DMT monitor)
- LALApps programs used to create ILWD and frame files
 - » lalapps_mkcalref: makes calibration reference spectrum ILWD and frame files from ascii files (S1 & S2)
 - » lalapps_mkcalfac: makes calibration factors ILWD and frame files from ascii files (S1 but not S2)

Future Options...

- Calibration reference spectra and factors should be kept together in frame files to avoid confusion about which reference was use for particular factors
- * LAL routines to compute factors α and β given LSC-AS_Q, LSC-DARM_CTRL, and LSC-ETMX_EXC_DAQ... only need a reference spectrum
- Keep calibration information in segment tables in database